Wait a second...
Nepřihlášený uživatel
You are here: VŠCHT PrahaFCHTÚACH  → Research → Transition Metal Oxide Materials – homepage → Equipment
iduzel: 40225
idvazba: 42900
šablona: stranka_ikona
čas: 27.11.2022 02:17:29
verze: 5243
branch: trunk
Obnovit | RAW
iduzel: 40225
idvazba: 42900
---Nová url--- (newurl_...)
domena: 'uach.vscht.cz'
jazyk: 'en'
url: '/research/oxide-materials/equipment'
iduzel: 40225
path: 8548/25669/25671/25675/25783/28557/40225
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW


Our laboratory is equipped with devices for the preparation of bulk materials and coatings and instrumentation for a basic characterization of polycrystalline materials – phase analysis and optical properties. Other ways of characterization can be performed within the Department of Inorganic Chemistry (Instrumentation of the Department) or in cooperation with other institutions.

  • Spin-coater, dip-coater
  • Vacuum furnace up to 1700 °C and 10-7 Pa
  • High temperature furnace for the synthesis of solids
  • High-temperature furnaces for the synthesis of solids with a controlled atmosphere
  • Glove box
  • X-ray diffractometer for polycrystalline materials
  • Fiber spectrometer for the UV-Vis range

Spin coater

The spin-coating method is used to deposit thin films of a thickness ranging from nanometers to micrometers onto flat substrates. The films are prepared from volatile solutions or suspensions. The method is widely used in both the laboratory and industrial spheres. The principle is to apply a small amount of solution to the center of a horizontally attached substrate and then to rotate it up to several thousand revolutions per minute. Centrifugal forces cause the solution to spread evenly over the entire surface of the substrate, with the excess of the solution flowing over its edge. This will create a thin layer or layers in case of a repeated application. 

By subsequent annealing, a crystalline film with desired properties can be prepared. The great advantages of this method are low technological difficulty, simplicity and reproducibility. 

Our laboratory is equipped with a spin-coater type WS-650SZ-6NPP / LITE from Laurell Technologies Corporation.

Technical parameters

Atmosphere Nitrogen (vacuum system for substrate attachment)
Ramp / rotation / stopping time 1 s – 99 h 59 min
Substrate rotation speed
1 – 8,000 rot. min–1
Acceleration / deceleration 2 – 10,000 rot. min–2

Dip coater

Dip-coating is a method that allows a thin layer to be prepared on both sides of a substrate at once. The principle of the method lies in the vertical immersion of the substrate into the solution for a certain period. Subsequently, the substrate is emerged with a defined velocity, with the excess solution flowing back into the vessel and evaporating the excess solvent. The more wetting of the solution, the thinner the layer that remains on the substrate surface. Sometimes the wedge effect can be observed, which is an asymmetry in the thickness of the layer on the bottom and top of the substrate. The deposited layer is further heat-treated. The dip-coating method is characterized by its low financial demands and easy preparation of the layers. 

Our laboratory has a dip-coater type RDC21-K from Bungard Elektronik GmbH. 

Technical parameters

Working atmosphere air
Maximum substrate weight 5 kg
Maximum lift height 580 mm
 Handling speed 3 – 7,000 mm min–1 or 1.5 – 3,500 mm min–1
The speed of immersion / pulling 3 – 2,500 mm min–1 or 1.5 – 1,750 mm min–1
Dive / pull time 1 s – 99 h 59 min

High-temperature furnace for solid phase synthesis

Muffle furnace for temperatures up to 1350 ° C (air)

Sintering of materials in a muffle furnace at 850 ° C

X-ray diffractometer for polycrystalline materials

Bruker-Phaser 2nd Generation XRD for polycrystalline samples
Difractometer with Co X-ray lamp
(Wavelength of excitation light λ [Co K-α1] = 1.789 · 10–1 nm)

Updated: 21.5.2020 15:01, Author: Kateřina Rubešová

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.
switch to desktop version