Wait a second...
stdClass Object
(
    [nazev] => Department of Inorganic Chemistry
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => 
    [ga_account] => 
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 
    [pozadi1] => 0007~~c0zJT0oNLslPzo43NTC2NDM1MjbRLU9NAgA.jpg
    [pozadi2] => 0004~~cy6qLC5JzCmOd0zJT0oNLslPzo43NLI0sTA1NLTQLU9NAgA.jpg
    [pozadi3] => 0005~~y81PSc2p1C0uKSrNLikt0i1PTQIA.jpg
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'uach.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8548/25669/25671
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 25671
    [platne_od] => 31.10.2023 17:08:00
    [zmeneno_cas] => 31.10.2023 17:08:12.11873
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 32578
    [cms_time] => 1713568749
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [logo_mobile_href] => /
            [logo_mobile] => 
            [google_search] => 001523547858480163194:u-cbn29rzve
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Search
            [mobile_over_nadpis_jazyky] => Languages
            [mobile_over_nadpis_login] => Login
            [menu_home] => Homepage
            [aktualizovano] => Updated
            [autor] => Author
            [paticka_mapa_odkaz] =>  
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:Ondrej.Muller@vscht.cz [zobraz_desktop_verzi] => switch to desktop version [social_fb_title] => [social_tw_title] => [social_yt_title] => [drobecky] => You are here: VŠCHT PrahaFCHTÚACH [more_info] => More Information [zobraz_mobilni_verzi] => switch to mobile version [preloader] => Wait a second... [nepodporovany_prohlizec] => [hledani_nadpis] => hledání [hledani_nenalezeno] => Nenalezeno... [hledani_vyhledat_google] => vyhledat pomocí Google [novinky_kategorie_5] => [novinka_publikovano] => Publikovano: [den_kratky_5] => [novinka_datum_konani] => Datum konani: [novinky_archiv] => [novinky_servis_kategorie_vse] => vše [novinky_servis_archiv_submit] => Filtrovat [archiv_novinek] => [novinky_servis_archiv_rok] => [novinky_kategorie_1] => [novinky_kategorie_2] => [novinky_kategorie_3] => [novinky_kategorie_4] => [novinky_archiv_url] => [novinky_servis_nadpis] => [novinky_dalsi] => [social_in_odkaz] => [den_kratky_4] => [social_li_odkaz] => ) [poduzel] => stdClass Object ( [25674] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [25680] => stdClass Object ( [obsah] => [iduzel] => 25680 [canonical_url] => //uach.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [25681] => stdClass Object ( [obsah] => [iduzel] => 25681 [canonical_url] => //uach.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [25682] => stdClass Object ( [obsah] => [iduzel] => 25682 [canonical_url] => //uach.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 25674 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [25675] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [25683] => stdClass Object ( [nazev] => Department of Inorganic Chemistry [seo_title] => Department of Inorganic Chemistry [seo_desc] => [autor] => [autor_email] => [obsah] =>

Department of Inorganic Chemistry guarantees following general studies: General and Inorganic Chemistry I, General and Inorganic Chemistry II and corresponding laboratory courses.

For the "Chemistry and Technologies of Materials" specialization (elective subjects): Structure and Properties of Inorganic Materials and Technologies of the Special Inorganic Materials. Further we carry on the laboratories for the "Special Inorganic Materials" specialization.

Our department is a tutorial workplace for the postgradual Ph.D. students of the "Inorganic Chemistry" specialization and we also participate in teaching of other relative specializations like the "Chemistry and Technologies of the Inorganic Materials" or the "Chemical metalurgy".

[urlnadstranka] => [iduzel] => 25683 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka_novinky [html] => [css] => [js] => [autonomni] => 1 ) ) [25781] => stdClass Object ( [nazev] => Department specialization [seo_title] => Department specialization [seo_desc] => [autor] => [autor_email] => [obsah] =>

Department of Inorganic Chemistry guarantees following general studies General and Inorganic Chemistry I, General and Inorganic Chemistry II and Laboratories - General and Inorganic Chemistry I, Laboratories - General and Inorganic Chemistry II.

For the "Chemistry and Technologies of Materials" specialization (elective subjects) Structure and Properties of Inorganic Materials and Technologies of the Special Inorganic Materials. Further we carry on the laboratories for the "Special Inorganic Materials" specialization.

Our department is a tutorial workplace for the postgradual Ph.D. students of the "Inorganic Chemistry" specialization and we also participate in teaching of other relative specializations like the "Chemistry and Technologies of the Inorganic Materials" or the "Chemical metalurgy".

[iduzel] => 25781 [canonical_url] => //uach.vscht.cz/about [skupina_www] => Array ( ) [url] => /about [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [73796] => stdClass Object ( [nazev] => SoferGroup [seo_title] => SoferGroup [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 73796 [canonical_url] => [skupina_www] => Array ( ) [url] => /sofergroup-en [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [25784] => stdClass Object ( [nazev] => Studies [seo_title] => Studies [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 25784 [canonical_url] => //uach.vscht.cz/studies [skupina_www] => Array ( ) [url] => /studies [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [25783] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 25783 [canonical_url] => //uach.vscht.cz/research [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [25782] => stdClass Object ( [nazev] => Equipment [seo_title] => Equipment [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 25782 [canonical_url] => //uach.vscht.cz/equipment [skupina_www] => Array ( ) [url] => /equipment [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 25675 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Research
    [seo_title] => Research
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 
    [submenuno] => 
    [urlnadstranka] => 
    [ogobrazek] => 
    [pozadi] => 
    [newurl_domain] => 'uach.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '/research'
    [newurl_iduzel] => 25783
    [newurl_path] => 8548/25669/25671/25675/25783
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 25783
    [platne_od] => 16.09.2016 12:38:00
    [zmeneno_cas] => 16.09.2016 12:38:53.040342
    [zmeneno_uzivatel_jmeno] => Ondřej Müller
    [canonical_url] => //uach.vscht.cz/research
    [idvazba] => 32694
    [cms_time] => 1713569827
    [skupina_www] => Array
        (
        )

    [slovnik] => Array
        (
        )

    [poduzel] => stdClass Object
        (
            [54468] => stdClass Object
                (
                    [nazev] => Advanced Composite Materials
                    [seo_title] => Advanced Composite Materials
                    [seo_desc] => 
                    [autor] => Filip Antončík
                    [autor_email] => Filip.Antoncik@vscht.cz
                    [obsah] => 

The advanced composite materials group was formed in 2017. The main research fields are advanced superconducting ceramics based on mixed copper oxides, thermoelectric materials based on mixed cobalt oxides, carbon nanomaterials, and composite materials based on rective magnesia. Such materials are used in construction, transportation, energy industry, and ecology.

Research and development are being done as a part of both primary and applied research with the cooperation of both domestic and international industrial partners and the academic sphere.

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [62141] => stdClass Object ( [nazev] => Awards [seo_title] => Awards [seo_desc] => [autor] => [autor_email] => [obsah] =>

2022:

  • Filip Antončík                                    Jean-Marie Lehn Prize for Chemistry - 2nd place
  •                                                                  Inorganic Non-metallic Materials Competition - 3rd place 
  • Anna Marie Lauermannova         Inorganic Non-metallic Materials Competition - 1th place 

2021:

  • Michal Lojka                                      Josef Hlávka Awardq
  • Anna Marie Lauermannova        Crytur Award for Best Master's Thesis - 1th place     
  •                                                                 Czech Ceramic Society - Best master's thesis award
  • Ivana Faltysová                                TVIP Conference Hustopeče - Best Poster Award 

2020:

  • Filip Antončík                                    Crytur Award for Best Master's Thesis - 2nd place     
  •                                                                 Czech Ceramic Society - Best master's thesis award
[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 62141 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials/62141 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [54985] => stdClass Object ( [nazev] => Cooperation [seo_title] => Cooperation [seo_desc] => [autor] => [autor_email] => [perex] =>

Loga (originál)

Silesian University of Technology logo

logo crismatENSICAEN

European Commission - Joint Research Centre (JRC) - Institute for Transuranium  Elements (ITU) - Forum Franco-Allemand

About the logo | University of Cambridge

Slovak Academy of Sciences - Wikipedia

Středoevropský technologický institut CEITEC má nového ředitele – Výzkumný  ústav veterinárního lékařství, v. v. i.

Institute of Plasma Physics Prague | FuseNet

VSB - Technical University of Ostrava in Czech Republic - Master Degrees

IPPA - About Padova

IPPA - About Padova

IPPA - About Padova

[ikona] => [obrazek] => [ogobrazek] => [pozadi] => [obsah] => [urlnadstranka] => [iduzel] => 54985 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials/54985 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [54502] => stdClass Object ( [nazev] => Grants [seo_title] => Grants [seo_desc] => [autor] => Filip Antončík [autor_email] => [perex] => [ikona] => mikroskop [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

TH02010822      Development of horizontal and vertical levitating conveyor systems

                                TACR EPSILON 2017-2021

GA17-13161S    The role of nonstoichimetry and nanosizing in material properties of metal                                  oxides

                                GAČR 2017-2019

GA17-02815S    Research and development of high-performance composites containing                                 biomass ash

                                GAČR 2017-2019

TJ01000072        Nanoobjects for water decontamination

                                TAČR ZÉTA  2018-2020

TK01030200      Advanced superconducting ceramics for energy applications

                                TACR THÉTA 2018-2024

GA19-00262S    Reactive magnesia cements-based composites with selected admixtures and additives

                                GAČR 2019-2021

FV40201              Research and development of primary materials for the deposition of superconducting thin films                       

                                GAČR 2020-2022

GA20-01866S      High-value composites containing layered materials

                                 GAČR 2020-2022

TJ04000022        Composite ceramics filters used for water treatment of water polluted by pesticides and  heavy metals

                                TACR ZETA 2020-2022

                                High-strength and water-resistant MOC composites with secondary fillers: contribution of 2D carbon-based nanomaterials and their combinations

                                GAČR - JUNIOR STAR 2023-2027

CZ.02.01.01/00/22_008/0004631             Materials and technologies for sustainable development

                                 Jan Amos Komensky Operational Program

[urlnadstranka] => [iduzel] => 54502 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials/54502 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [54504] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [obsah] =>

(Since 2017)

1) J. Pinc, O. Jankovský, V. Bartůněk, Preparation of manganese oxide nanoparticles by thermal decomposition of nanostructured manganese carbonate, Chem. Pap., 2017, 71, 1031–1035.

2) M. Pižl, O. Jankovský, P. Ulbrich, N. Szabo, I. Hoskovcova, D. Sedmidubský, V. Bartůněk, Facile preparation of nanosized yttrium oxide by the thermal decomposition of amorphous Schiff base yttrium complex precursor, J. Organomet. Chem., 2017, 830, 146-149.

3) V. Bartůněk, Š. Huber, J. Luxa, Z. Sofer, M. Kuchař, K. Dobrovolný, O. Jankovský, Facile Synthesis of Magnetic Cobalt Nano-foam by Low-temperature Thermal Decomposition of Cobalt Glycerolate, Micro & Nano Letters, 2017, 12, 278 – 280.

4) M. Nováček, O.Jankovský, J. Luxa,  D. Sedmidubský, M. Pumera, V. Fila,   M. Lhotka,  K. Klímová,  S. Matějková,  Z. Sofer, Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals,  J. Mater. Chem. A, 2017, 5, 2739-2748.

5) O. Jankovský, M. Nováček, J. Luxa, D. Sedmidubský, M. Boháčová, M. Pumera, Z. Sofer, Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide, Chem. Eur. J., 2017, 23, 6432-6440.

6) O. Jankovský, M. Lojka, J. Luxa, D.Sedmidubský, O.Tomanec, R.Zbořil, M.Pumera, Z. Sofer, Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction, Chem. Eur. J., 2017, 23, 10473–10479.

7) O. Jankovský, V. Rach, D. Sedmidubský, Š. Huber, P. Ulbrich, M. Švecová, V. Bartůněk, Simple synthesis of free surface nanostructured spinel NiFe2O4 with a tunable particle size, J. Alloy. Comp., 2017, 723, 58-63.

8) O. Jankovský, Z. Sofer, J. Kovařík, K. Růžička, J. Leitner, D. Sedmidubský, Thermodynamic properties of misfit cobaltite [Bi2-xCa2O4][CoO2]1.7. Thermochim. Acta, 2017, 656, 129-134.

9)  O. Jankovský, M. Pavlíková, D. Sedmidubský, D. Bouša, M. Lojka, J. Pokorný, M. Záleská, Z.Pavlík, Study on pozzolana activity of wheat straw ash as potential admixture for blended cements, Ceramics-Silikáty, 2017, 61, 327-339.

10) O. Jankovský, A. Jiříčková, J. Luxa, D. Sedmidubský, M. Pumera, Z. Sofer, Z.. Fast Synthesis of Highly Oxidized Graphene Oxide, ChemistrySelect, 2017, 2, 9000-9006.

11) O. Jankovský, M. Lojka, J. Luxa, D. Sedmidubský, M. Pumera, Z. Sofer, Introduction of sulfur to graphene oxide by Friedel-Crafts reaction, FlatChem 2017, 6, 28-36.

12) O. Jankovský, D. Sedmidubský, Phase equilibria modelling in Bi–Sr–Co–O system—Towards crystal growth and melt-assisted material processing, J. Eur. Ceram. Soc., 2018, 38, 131-135.

13) M. Záleská, M. Pavlíková, Z. Pavlík, O. Jankovský, J. Pokorný, V. Tydlitát, P. Svora, R. Černý, Physical and chemical characterization of technogenic pozzolans for the application in blended cements, Constr. Build. Mater. 2018, 160, 106–116.

14) J. Leitner, V. Bartůněk, D. Sedmidubský, O. Jankovský, Thermodynamic properties of nanostructured ZnO, Appl. Mater. Today 2018, 10, 1–11.

15) M. Záleská, Z. Pavlík, M. Pavlíková, L. Scheinherrová, J. Pokorný, A. Trník, P. Svora, J. Fořt, O. Jankovský, Z. Suchorab, R. Černý, Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites, Clean Technol. Environ. Policy, 2018, 20, 159–171

16) O. Jankovský, F. Antončík, T. Hlásek, V. Plecháček, D. Sedmidubský, Š. Huber, M. Lojka, V. Bartůněk, Synthesis and properties of YBa2Cu3O7-δ – Y2Ba4CuWO10.8 superconducting composites, J. Eur. Ceram. Soc., 2018, 38, 2541-2546.

17) V. Bartůněk, D. Sedmidubský, D. Bouša, O. Jankovský, Production of pure amorphous silica from wheat straw ash, Green Mater., 2018, 6, 1-5.

18) M. Záleská, M. Pavlíková, O. Jankovský, J. Pokorný, Z. Pavlík, Lightweight Concrete Made With Waste Expanded Polypropylene-Based Aggregate And Synthetic Coagulated Amorphous Silica, Ceramics-Silikáty, 2018, 62 (3) 221-232.

19) D. Bousa, V. Mazanek, D. Sedmidubsky,  O. Jankovsky,  M. Pumera, Z. Sofer, Hydrogenation of Fluorographite and Fluorographene: an Easy Way to Produce Highly Hydrogenated Graphene, Chem. Eur. J., 2018, 24(33) 8350-8360.

20) E. Storti, O. Jankovský, P. Colombo, Ch. G. Aneziris, Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning, J. Eur. Ceram. Soc., 2018, 38, 4109-4117.

21) O. Jankovský, E. Storti, K. Moritz, B. Luchini, A. Jiříčková, Ch. G. Aneziris, Nano-functionalization of carbon-bonded alumina using graphene oxide and MWCNTs, J. Eur. Ceram. Soc., 2018, 38 (14) 4732-4738

20) M. Pižl, O. Jankovský, M. Guricová, I. Hoskovcová, D. Sedmidubský, V.Bartůněk, Mixed Yttrium–Ytterbium–Erbium Schiff Base Complex as a Model Precursor for Mixed Nanosized Rare Earths Oxides, J. Cluster. Sci., 2018, 29, 549–553.

21) M. Záleská, M. Pavlíková, J. Pokorný, O. Jankovský, Z. Pavlík, R. Černý, Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics, Constr. Build. Mater. 2018, 180, 1–11.

22) M. Záleská, M. Pavlíková, O. Jankovský, M. Lojka, A. Pivák, Z. Pavlík, Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate, Materials, 2018, 11(6), 931-936.

23) J. Leitner, D. Sedmidubský, O. Jankovský, Effect of ZnO Nanosizing on its Solubility in Aqueous Media, Micro Nano Let., 2018, 13(11),1585 – 1589.

24) V. Bartůněk, D. Sedmidubský, Š. Huber, M. Švecová, P. Ulbrich, O. Jankovský, Synthesis and Properties of Nanosized Stoichiometric Cobalt Ferrite Spinel, Materials 2018, 11(7), 1241.

25) O. Jankovský, E. Storti, G. Schmidt, S. Dudczig, Z. Sofer, Ch. G. Aneziris, Unique Wettability Phenomenon of Carbon-bonded Alumina with Advanced Nanocoating, Applied Materials Today, 2018, 13, 24-31.

26) M. Lojka, O. Jankovský, D. Sedmidubsky, V. Mazanek,  D. Bouša,  M. Pumera,  S. Matějková,  Z. Sofer, Synthesis and Properties of Phosphorous and Sulfur Co-Doped Graphene , New J. Chem., 2018, 42(19), 16093-16102.

27) M. Pavlíková, J. Pokorný, O. Jankovský, M. Záleská, M. Vavro, K. Souček, Z. Pavlík, The effect of the sodium sulphate solution exposure on properties and mechanical resistance of different kinds of renders, Ceramics Silikaty, 2018, 62 (4), 311-324.

28) M. Pavlíková, L. Zemanová, J. Pokorný, M. Záleská, O. Jankovský, M. Lojka, D. Sedmidubský, Z. Pavlík, Valorization of Wood Chips Ash as an Eco-Friendly Mineral Admixture in Mortar Mix Design, Waste Management, 2018, 80, 89-100.

29) K. Rubešová, T. Thoř, V. Jakeš, D. Mikolášová, J. Maixner, O. Jankovský, J. Cajzl, L. Nádherný, A. Beitlerová, M. Nikl, Lanthanide-doped Y2O3 – The Photoluminescent and Radioluminescent Properties of Sol-Gel Prepared Samples, Ceramics-Silikáty, 2018, 62 (4), 411-417.

30) V. Bartůněk, P. Ulbrich, J. Pinc, D. Sedmidubský, O. Jankovský, Fine fluorite nanoparticles synthesized from biomass ash, Journal of Fluorine Chemistry, 2018, 216, 112–117.

31) T. Hlásek, Y. Shi, J. H. Durrell, A. R. Dennis, D. K. Namburi, V. Plecháček, K. Rubešová, D. A. Cardwell, O. Jankovský, Cost-effective Isothermal Top-Seeded Melt-growth of Single-domain YBCO Superconducting Ceramics, Solid State Sciences, 2019, 88, 74-80.

32) V. Doležal, L. Nádherný, K. Rubešová, V. Jakeš, A. Michalcová, O. Jankovský, M. Poupon, LaMgAl11O19 synthesis using non-hydrolytic sol-gel methods, Ceram. Int., 2019, 45, 1233-11240.

33) M. Pavlíková, L. Zemanová, M. Záleská, J. Pokorný, M. Lojka, O. Jankovský, Z. Pavlík, Z, Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar, Materials, 2019, 12(6), 996.

34) O. Jankovský, V. Bartůněk, F. Antončík, A. Jiříčková, A. M. Lauermannová, M. Záleská, M. Pavlíková, J. Pokorný, Z. Pavlík, Wood chips ash processing and its utilization in magnesium phosphate cement composites, Ceramics Silikaty, 2019, 63 , 267-276

35) K. Jilkova, M. Mika, P. Kostka, F. Lahodny, P. Nekvindova, O. Jankovsky, R. Bures, M. Kavanova, Electro-optic glass for light modulators, Journal of Non-Crystalline Solids, 2019, 518, 51-56

36) V. F. Rahhal, M. A. Trezza, A. Tironi, C. C. Castellano, M. Pavlíková, J. Pokorný, E. F. Irassar, O. Jankovský, Z. Pavlík, Complex characterization and behaviour of sintered ceramic waste powder-Portland cement system, Materials, 2019, 12, 1650.

37) M. Pavlíková, L. Zemanová, J. Pokorný, M. Záleská, O. Jankovský, M. Lojka, Z. Pavlík, Influence of wood-based biomass ash admixing on the structural,  mechanical, hygric, and thermal properties of air lime mortars, Materials, 2019, 12, 2227.

38) M. Lojka, B. Lochman, O. Jankovský, A. Jiříčková, Z. Sofer, D. Sedmidubský, Synthesis, composition and properties of partially oxidized graphite oxides, Materials, 2019, 12, 2367.

39) M. Záleská, Z. Pavlík, D. Čítek, O. Jankovský, M. Pavlíková, Eco-friendly concrete with scrap-tyre-rubber-based aggregate - properties and thermal stability, Construction and Building Materials 2019, 225, 709–722

40) F. Antončík, D. Sedmidubský, A. Jiříčková, M. Lojka, T. Hlásek, K. Růžička and O. Jankovský, Thermodynamic properties of stoichiometric non superconducting phase Y2BaCuO5, Materials, 2019, 12 (19), 3163.

41) V. Bartůněk, J. Luxa, D. Sedmidubský, T. Hlásek, and O. Jankovský, Microscale and Nanoscale Pinning Centres in Single-domain REBCO Superconductors, J Mater. Chem C, 2019, 7, 13010 – 13019.

42) J. Leitner, D. Sedmidubský, O. Jankovský, Size and shape-dependent solubility of CuO nanostructures, Materials, 2019, 12 (20), 3355.

43) M. Záleská, M. Pavlíková, O. Jankovský, M. Lojka, F. Antončík, A. Pivák, Z. Pavlík, Influence of Waste Plastic Aggregate and Water-Repellent Additive on the Properties of Lightweight Magnesium Oxychloride Cement Composite, Appl. Sci., 2019, 9, 5463.

44) E. Storti, O. Jankovský, D. Sedmidubský, S. Dudczig, Ch. G. Aneziris, Filter coatings based on combination of nanomaterials for steel melt filtration, Adv. Eng. Mater., 2020, 22, 1900457.

45) K. Skrbek, O, Jankovský, D. Sedmidubský, V. Bartůněk, Flame aerosol transport method for assembling CeO2-SiO2 nanocomposites, Ceram. Int., 46 (4), 5495-5499.

46) F. Antončík, M. Lojka, T. Hlásek, V. Bartůněk, I. Valiente, J. Pérez-Díaz and O. Jankovský, Radial and axial stiffness of superconducting bearings based on YBCO single-domain bulks processed with artificial holes, Supercond. Sci. Technol., 2020, 33, 045010.

47) M. Lojka, O. Jankovský, A.Jiříčková, A.-M. Lauermannová, F. Antončík, D. Sedmidubský, Z. Pavlík, M. Pavlíková, Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O, Materials 2020, 13(3), 767.

48) A. Jiříčková, M. Lojka, A.-M. Lauermannová, F. Antončík, D. Sedmidubský, M. Pavlíková, M. Záleská, Z. Pavlík, O. Jankovský, Synthesis, Structure and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2∙MgCl2∙8H2O, Appl. Sci. 2020, 10, 1683.

49) O. Jankovský, M. Lojka, A.-M. Lauermannová, F.Antončík, M. Pavlíková, Z. Pavlík, D. Sedmidubský, Carbon dioxide uptake by MOC-based materials Appl. Sci. 2020, Appl. Sci. 2020, 10, 2254.

50) O. Jankovský, M.Lojka, A. Jiříčková, Ch. G. Aneziris, E. Storti, D. Sedmidubský, Carbon-bonded alumina filters coated by graphene oxide for water treatment, Materials 2020, 13, 2006,

51) F. Antončík, M. Lojka, T. Hlásek, I.Valiente-Blanco, J.L. Perez-Diaz, O. Jankovský, Artificially perforated single-grain YBCO bulks: Dependence of superconducting properties on the bulk thickness, Journal of the American Ceramic Society, 2020, 103, 5169-5177.

52) A. Pivák, M. Pavlíková, M.Záleská, M. Lojka, O. Jankovský, Z. Pavlík, MOC Composites with Silica Filler and Coal Fly Ash Admixture, Materials 2020, 13, 2537

53) A-M. Lauermannová, M. Lojka, F. Antončík, D. Sedmidubský, M. Pavlíková, Z. Pavlík, O.Jankovský, Magnesium oxybromides MOB-318 and MOB-518: brominated analogues of magnesium oxychlorides, Appl. Sci.2020, 10(11), 4032. 

54) J. Leitner, D. Sedmidubský, M. Lojka, O. Jankovský, The effect of nanosizing on the oxidation of partially oxidized copper nanoparticles, Materials 2020, 13(12), 2878.

55) A. Pivák, M. Pavlíková, M. Záleská, M. Lojka, A.-M.Lauermannová, O. Jankovský, Z. Pavlík, Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste, Processes, 2020, 8, 829.

56) O. Jankovský, M. Lojka, A.-M. Lauermannová, F. Antončík, M. Pavlíková, M. Záleská, Z. Pavlík, A. Pivák and D. Sedmidubský, Towards novel building materials: high-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride, Appl. Mater. Today, 2020, 20, 100766

57) F. Antončík, O. Jankovský, T. Hlásek, V. Bartůněk, Nanosized pinning centers in the rare earth-barium-copper-oxide thin-films superconductors, Nanomaterials, 2020, 10, 1429.

58) K. Skrbek, V. Bartůněk, M. Lojka, D. Sedmidubský, O. Jankovský, Synthesis and characterization of the properties of ceria nanoparticles with a tunable particle size for the decomposition of chlorinated pesticides, Appl. Sci.2020, 10, Appl. Sci. 2020, 10(15), 5224.

59) M. Lojka, F. Antončík, D. Sedmidubský, T. Hlásek, J. Wild, J. Pavlů, O. Jankovský, V. Bartůněk, Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions, J. Mater. Res. Technol., 2020, 9, 12071-12079.

60) M. Pavlíková, A. Pivák, M. Záleská, O. Jankovský, P. Reiterman, Z. Pavlík, Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass, Materials 2020, 13, 4828.

61) A.-M. Lauermannová, I. Paterová, J. Patera, K. Skrbek, O. Jankovský, V. Bartůněk, Hydrotalcites in construction materials, Appl. Sci. 2020, 10, 7989.

62) F. Antončík, M. Lojka, T. Hlásek, D. Sedmidubský, O. Jankovský, V. Bartůněk*, The effective synthesis of large volumes of the ultrafine BaZrO3 nanoparticles, Materials Chemistry and Physics 2021, 259, 124047. 

63) M. Lojka, A.-M. Lauermannová, D. Sedmidubský, M. Pavlíková, M. Záleská, Z. Pavlík, A. Pivák, O. Jankovský*, Magnesium oxychloride cement composites with MWCNT for the construction applications, Materials, 2021, 14, 484.

64) A.-M. Lauermannová, M. Lojka, O. Jankovský, I. Faltysová, M. Pavlíková, A. Pivák, M. Záleská and Z. Pavlík*, High-performance Magnesium oxychloride composites with silica sand and diatomite, Journal of Materials Research and Technology, 2021, 11, 957-969. 

65) A.-M. Lauermannová, M. Lojka, M. Pavlíková, A. Pivák, M. Záleská, Z. Pavlík, O. Zmeškal and O. Jankovský*, Graphene- and graphite oxide-reinforced magnesium oxychloride cement composites for the construction use, Ceramics-Silikaty, 2021, 65 (1), 38-47.

66) A.-M. Lauermannová, I. Faltysová, M. Lojka, F. Antončík, D. Sedmidubský, Z. Pavlík, M. Pavlíková, M. Záleská, A. Pivák, O. Jankovský, Regolith-based magnesium oxychloride composites doped by graphene: novel high-performance building materials for lunar constructions, FlatChem, 2021, 26, 100234. 

67) A.Pivák, M. Pavlíková, M. Záleská, M. Lojka, A.-M. Lauermannová, I. Faltysová, O. Jankovský, Z. Pavlík*, Foam Glass Lightened Sorel’s Cement Composites Doped with Coal Fly Ash, Materials, 2021, 14, 1103. 

68) Antončík, Filip, et al. "Influence of RE-Based Liquid Source (RE= Sm, Gd, Dy, Y, Yb) on EuBCO/Ag Superconducting Bulks." IEEE Transactions on Applied Superconductivity 31.5 (2021): 1-5.

69) Skočdopole, Jakub, et al. "Transport Coefficients in Y-Ba-Cu-O System for Ionized Jet Deposition Method." IEEE Transactions on Applied Superconductivity 31.5 (2021): 1-3.

70) Lojka, Michal, et al. "Effect of Target Density on the Surface Morphology of Y-Ba-Cu-O Thin Films Prepared by Ionized Jet Deposition." IEEE Transactions on Applied Superconductivity 31.5 (2021): 1-5.

71) M. Záleská, M. Pavlíková, A. Pivák, Š. Marušiak, O. Jankovský, A.-M. Lauermannová, M. Lojka, F. Antončík, Z. Pavlík, MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on its Properties, Materials, 2021, 14(6), 1450.

72) M. Záleská, M. Pavlíková, A. Pivák, A.-M. Lauermannová, O. Jankovský, Z. Pavlík, Lightweight vapor-permeable plasters for building repair – detailed experimental analysis of the functional properties, Materials 2021, 14, 2613.

73) M. Pavlíková, A. Kapicová, A. Pivák, M. Záleská, M. Lojka, O. Jankovský, Z. Pavlík*, Zeolite lightened repair renders: effect of binder type on properties and salt crystallization resistence, Materials 2021, 14, 3760.

74) K. Skrbek, O. Jankovský, M. Lojka, F. Antončík, V. Bartunek*, Synthesis of nanosized LaFeAl11O19 hexaaluminate by mixed metal glycerolate method, Ceramics international, 2021, https://doi.org/10.1016/j.ceramint.2021.07.135.

75) F. Antončík, M. Lojka, D. Sedmidubský and O. Jankovský*, High-density YBCO Targets for Sputtering with Defect-free Microstructure Prepared by Novel Infiltration Method, J. Eur. Ceram. Soc., 2021, ttps://doi.org/10.1016/j.jeurceramsoc.2021.07.038.

76) M. Pavlíková*, M. Záleská, A. Pivák, O. Jankovský, A.-M. Lauermannová, M. Lojka, F. Antončík, and Zbyšek Pavlík, MOC-Diatomite Composites Filled with Multi-Walled Carbon Nanotubes, Materials, 2021, 14, 4576.

77) A.-M. Lauermannová, M. Lojka, O. Jankovský, I. Faltysová, D. Sedmidubský, M. Pavlíková, A. Pivák, M. Záleská, Š. Marušiak and Z. Pavlík, The influence of graphene specific surface on material properties of MOC-based composites for construction use, Journal of Building Engineering, 43 (2021): 103193.

78) A.-M. Lauermannová, M. Lojka, J. Sklenka, M. Záleská, M.Pavlíková, A. Pivák, Z. Pavlík, O.Jankovský, Magnesium oxychloride-graphene composites: towards high strength and water resistant materials for construction industry, FlatChem, 2021, 29, 100284.

79)F. Antončík, M. Lojka, T. Hlásek, V. Plecháček and O. Jankovský*, Tuning the top-seeded melt growth of REBCO single-domain superconducting bulks by a pyramid-like buffer stack , Ceram. Int., 2022, 48, 5377-5385.

80) E. Storti, J. Fruhstorfer, B. Luchini, A. Jiříčková, O. Jankovský, Ch. G. Aneziris, Graphene-reinforced carbon-bonded coarse-grained refractories, Materials, 2022, 15, 186.

81)A.-M. Lauermannová, O. Jankovský, M. Lojka, I. Faltysová, J. Slámová, M. Pavlíková, A. Pivák, Š. Marušiak, Z. Pavlík, M. Záleská*, Co-doped magnesium oxychloride composites with unique flexural strength for construction use, Materials, 2022, 15, 604.

82)A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský, Synthesis and Applications of Graphene Oxide, Materials, 2022, 15, 920.

83)M. Pavlíková, A. Kapicová, M. Záleská, A. Pivák, O. Jankovský, A.-M. Lauermannová, M. Lojka, I. Faltysová, J. Slámová, Z. Pavlík, Ultra-high strength multicomponent composites based on reactive magnesia: tailoring of material properties by addition of 1D and 2D Carbon nanoadditives, J. Build. Eng., 2022, 50, 104122.

84)K. Rubešová, V. Jakeš, O. Jankovský, M. Lojka, D. Sedmidubský,  Bismuth calcium cobaltite thermoelectrics: a study of precursor reactivity and its influence on the phase formation, J. Phys. Chem. Solids, 2022, 164, 110631. 

85)M. Pavlíková, A. Pivák, M. Záleská, A.-M. Lauermannová, F. Antončík, M. Lojka, O. Jankovský, Z. Pavlík, Assessment of Wood Chips Ash as Efficient Admixture in Foamed Glass-MOC Composites , J. Mater. Res. Technol., 2022, 19, 2287-2300.

86)L. Spejchalová O. Jankovský, K. Rubešová. V. Jakeš, A.-M. Lauermannová, D. Sedmidubský, Solid-Liquid Equilibria in the Bi-Ca-Co-O System, J. Eur. Ceram. Soc., 2022, 42, 5756-5761.

87)A.-M. Lauermannová, M. Pavlíková, Z. Pavlík, A. Pivák, A. Jiříčková, J. Sklenka, M. Záleská, K. Růžička, O. Jankovský, Magnesium Oxychloride Cement with Phase Change Material: Novel Environmentally-friendly Composites for Heat Storage, J. Mater. Res. Technol., 2022, 21, 3327-3342.

88)A.-M. Lauermannová, A. Jiříčková, D. Sedmidubský, M. Pavlíková, M. Záleská, A. Pivák, Z. Pavlík, O. Jankovský, Graphene and MWCNT reinforced magnesium oxychloride composite modified by tannic acid, FlatChem, 2023, 37, 100459.

89) A.-M.Lauermannová, O. Jankovský, D. Sedmidubský, M. Lojka, M. Pavlíková, A. Pivák, M. Záleská, Z. Pavlík, Case Study on MOC Composites Enriched by Foamed Glass and Ground Glass Waste: Experimental Assessment of Material Properties and Performance, Case Studies, 2023, 18, e01836.

90)M. Záleská, M. Pavlíková, M. Keppert, A.-M. Lauermannová, O.Jankovský, M. Lojka, A. Jiříčková, G. Łagód and Z. Pavlík, Thermally Treated Coal Mining Waste as a Supplementary Cementitious Material - Case Study from Bogdanka Mine, Poland, Journal of Building Engineering, 2023, 68, 106036.

91)J. Skočdopole, F. Antončík, M. Lojka, O. Jankovský, T. Hlásek, L. Kalvoda, Influence of substrate temperature on the morphology and phase composition of thin films prepared from Y-123 targets by the IJD method, IEEE Transactions On Applied Superconductivity, 2023, 33, IEEE Transactions On Applied Superconductivity, 2023, 33, 7500604.

92)F. Antončík, M. Lojka, T. Hlásek, J. Sklenka, O. Jankovský, D. Sedmidubský, Silver recycling from defective GdBCO/Ag high-temperature superconducting bulks, IEEE Transactions On Applied Superconductivity, 2023, 33, 6800805.

93)V. Doležal, V. Jakeš, J. Petrášek, P. Ctibor, O. Jankovský, K. Rubešová, D. Sedmidubský, Dielectric properties of (Eu,Ca)Cu3Ti4O12 ceramics prepared by a sol-gel method, Journal of Physics and Chemistry of Solids, 2023, 178, 111334.

94)A.-M. Lauermannová, M. Lojka, M. Záleská, M. Pavlíková, A. Pivák, Z. Pavlík, K. Růžička and Ondřej Jankovský, Magnesium oxychloride cement-based composites for latent heat storage: the effect of the introduction of multi-walled carbon nanotubes, J. Build. Eng., 2023, 72, 106604

95)O. Jankovský, A.-M. Lauermannová, M. Lojka, E. Storti, Be. Bock-Seefeld, M. Neumann, Ch. G. Aneziris, Towards a new generation of environmentally-friendly ceramic foam filters: contribution of graphene nanoadditives in calcium aluminate-rich coatings, J. Eur. Ceram. Soc., 2023, 43, 6504-6515

96)O. Jankovský, A.-M. Lauermannová, M. Lojka, E. Storti, Be. Bock-Seefeld, M. Neumann, Ch. G. Aneziris, Towards a new generation of environmentally-friendly ceramic foam filters: contribution of graphene nanoadditives in calcium aluminate-rich coatings, J. Eur. Ceram. Soc., 2023, 43, 6504-6515

97)E. Storti, M. Lojka, S. Lencová, J. Hubálková, O. Jankovský, Ch. G. Aneziris, Synthesis and characterization of nanoplatelets-containing fibers by electrospinning, Open Ceramics, 2023, 15, 100395.

98)A. Jiříčková, A.-M. Lauermannová, O. Jankovský, J. Fathi, M. Záleská, A. Pivák, M. Pavlíková, M. Jeremiáš, Z. Pavlík, Utilization of waste carbon spheres in Magnesium Oxychloride Cement, Case Studies in Construction Materials, 2023, 19, e02374.

99)A.-M. Lauermannová, O. Jankovský, M. Lojka, E. Storti, B. Bock-Seefeld, Christos G. Aneziris, Lactose/tannin-based calcium aluminate coatings for carbon-bonded alumina foam filters: a novel approach in environment-friendly steel melt filtration, Ceramics International,  2023,49(22),35574-35584.

100)O. Jankovský, A.-M. Lauermannová, F. Antončík, M. Záleská, M. Pavlíková, A. Pivák, Z. Pavlík, Case Study on nanoscale modification of MOC-based construction composites: Introduction of molybdenum disulfide for increased water resistance, Case Studies in Construction Materials, 2023, 19, e02495.

101)T. M.J. Stadtmüller, E. Storti, N. Brachhold, A.-M. Lauermannová, O. Jankovský, T. Schemmel, J. Hubálková, P. Gehre, Christos G. Aneziris, MgO–C refractories based on refractory recyclates and environmentally friendly binders, Open Ceramics, 2023, 16, 100469.

102)A. Mašláni, M. Hlína , M. Hrabovský, P. Křenek, V. S. Sikarwar, J. Fathi, S. Raman, S. Skoblia, O. Jankovský, A. Jiříčková, S. Sharma, T. Mates, R. Mušálek, F. Lukáč, M. Jeremiáš, Impact of natural gas composition on steam thermal plasma assisted pyrolysis for hydrogen and solid carbon production, Energy Conversion and Management, 2023, 297, 117748. 

103)A.-M. Lauermannová, O. Jankovský, A. Jiříčková, D. Sedmidubský, M. Záleská, A. Pivák, M. Pavlíková, Z. Pavlík, MOC Composites for Constructions: Improvement of Water Resistance by Addition of Nanodopants and Polyphenol, Polymers, 2023, 15(21), 4300.

104)F. Antončík, M. Lojka, T. Hlásek , D. Sedmidubský, J. Baumann, John H. Durrell, D. Cardwell, O. Jankovský , Novel Approach for Manufacture of Single-Grain EuBCO/Ag Bulk Superconductors via Modified Single-Direction Melt Growth, Journal of the American Ceramic Society, In press.

105) J. Sklenka, O. Jankovský, T. Hlásek, F. Antončík, Novel Chemical Recycling Process of REBCO Materials Showcased on TSMG Waste, Journal of Materials Chemistry C, 2023, In press.

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 54504 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials/54504 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [54499] => stdClass Object ( [nazev] => Menu [barva_pozadi] => seda [uslideru] => true [text] =>

Research 

Equipment

Team

Grants

Publications

Awards

Cooperation

[iduzel] => 54499 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) [54500] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => Filip Antončík [autor_email] => [obsah] =>

High-performance Superconducting Ceramics Composites Based on REBCO

REBCO (Rare-Earth Barium Copper Oxides) is the most widespread form of high-temperature superconductors. High-temperature superconductors are produced in many forms, of which the most notable are single-grain composite bulks, superconducting tapes, sputtering targets, and granulates. High-temperature superconductors are used, due to their unique properties, such as energy transport and storage, frictionless bearings, space exploration, and many others.

Thin films

Thin films (with a thickness of low nanometers, up to multiple microns) can be prepared from various bulk materials and generally retain the properties of bulk material while improving other properties such as flexibility. Such films can be prepared by a wide variety of approaches and are used in many modern technologies, such as LEDs, semiconductors, optics, energy generation, and storage, etc.

Advanced Composites for the Construction Industry

Portland cement is has a significant CO2 footprint, and also requires a long curing time. Alternatives based on magnesium oxychloride (MOC)  and oxybromide (MOB) are promising a solution to both of these problems.  Both MOC and MOB are carbon neutral while having various superior properties compared to Portland cement. They have better compressive and flexural strength, superior resistance to fire and abrasion, and good thermal properties. This makes them a promising alternative to portland cement in the future.

Ceramics Composite Filters for Water Treatment

Ceramic foam filters (Al2O3–C, Al2O3, SiC–Al2O3, YSZ) are commonly used in many industrial applications. As the water quality plays a significant role to the health of the general population, these filters can be further modified by nano-sized inclusions in order enhance the quality of drinking water by removing pesticides, hormones and heavy metals, which pose a significant problem for the current technologies used in water treatment facilities.
[urlnadstranka] => [obrazek] => [pozadi] => [iduzel] => 54500 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials/54500 [sablona] => stdClass Object ( [class] => stranka_sloupce_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 54468 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/advanced_composite_materials [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [42126] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [55247] => stdClass Object ( [nadpis] => [odkaz] => /research/advanced_composite_materials [text_odkazu] => Advanced Composite Materials [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 2 [pozice_y] => 3 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~c3T2BQA.png [iduzel] => 55247 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42134] => stdClass Object ( [nadpis] => [odkaz] => /research/nanomaterials-and-semiconductors [text_odkazu] => Nanomaterials and Semiconductors [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 1 [pozice_y] => 1 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~c61Iy8_JTExO9a_ITCl1L0pMyywpNQIA.jpg [iduzel] => 42134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42133] => stdClass Object ( [nadpis] => [odkaz] => /research/oxide-materials [text_odkazu] => Oxide Materials [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 2 [pozice_y] => 1 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~86_wTSzRLS4tKEoEAA.jpg [iduzel] => 42133 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42135] => stdClass Object ( [nadpis] => [odkaz] => /research/materials-for-photonics [text_odkazu] => Materials for Photonics [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 3 [pozice_y] => 1 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~C8jIL8nPy0wu1s1JLE4tAgA.jpg [iduzel] => 42135 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42136] => stdClass Object ( [nadpis] => [odkaz] => /research/coordination-chemistry [text_odkazu] => Coordination Chemistry [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 1 [pozice_y] => 2 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~c87PL0pxzkjN1Q1JLS4JKU1KLQYA.jpg [iduzel] => 42136 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42137] => stdClass Object ( [nadpis] => [odkaz] => /research/theoretical-chemistry [text_odkazu] => Theoretical Chemistry [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 2 [pozice_y] => 2 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~C8lIzS9yzkjNBQA.jpg [iduzel] => 42137 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42840] => stdClass Object ( [nadpis] => Plasma Processing and Industrial Applications [odkaz] => research/plasma-processing-and-industrial-applications [text_odkazu] => Plasma Processing and Industrial Applications [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 3 [pozice_y] => 2 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~SyxKz8_LL0vVLchJrMpN1C3Iz81PztTNzcwuyi_LyTMGAA.jpg [iduzel] => 42840 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [54631] => stdClass Object ( [nadpis] => [odkaz] => https://nanorobots.vscht.cz/?jazyk=en [text_odkazu] => Advanced Functional Nanorobots [perex] => [skupina] => [ikona] => [velikost] => 1 [pozice_x] => 1 [pozice_y] => 3 [barva_pozadi] => [countdown] => [obrazek_pozadi] => 0001~~y0vMyy_KT8ovKdZNSkzOTi_KL81LAQA.jpg [iduzel] => 54631 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 42126 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/42126 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [42841] => stdClass Object ( [nazev] => Plasma Processing and Industrial Applications [seo_title] => Plasma Processing and Industrial Applications [seo_desc] => [autor] => [autor_email] => [obsah] =>

Group profile

The work team prepares precursors for low-temperature plasma processing using the WSP® water-stabilized plasma generator. The Group has a very broad background in cooperation with manufacturing companies of special inorganic materials, pigments, superheated and abrasive materials, nanomaterials and explosives, protected by a number of recognized and used patents.

Problematics

Ceramic coatings prepared by LPPS
Nanoparticles of silver and gold and other metals prepared in thermal plasma
Plasma coating of phosphate steels
Disposal of waste from the production of explosives
Adjusting the properties of unleaded explosives
Weather aging of materials
Photocatalytic properties of pigments

Laboratory equipment

Apparatus for the disposal of waste water from the production of explosives
Artificial Weather Aging PVC Sheets (Q-Sun)
Plasma generator of the glid-arc type
Optical coordinate measuring device

[urlnadstranka] => [obrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 42841 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/plasma-processing-and-industrial-applications [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29149] => stdClass Object ( [nazev] => Nanomaterials and semiconductors [seo_title] => Nanomaterials and semiconductors [seo_desc] => [autor] => [autor_email] => klimovaa@vscht.cz [obsah] => [poduzel] => stdClass Object ( [42221] => stdClass Object ( [nazev] => About us [seo_title] => About us [seo_desc] => [autor] => [autor_email] => [obsah] =>

2018

Covalently modified two-dimensional arsenic

agwt (originál)

2017

Covalent Modification of Black Phosphorus

Covalent Modification (originál)

2016

Simple Synthesis of Fluorinated Graphene

simple synthesis (originál)

Graphene Acid

Graphene Acid (originál)

Unintentional Graphene Doping

Unintentional graphene doping (originál)

[urlnadstranka] => [iduzel] => 42221 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/42221 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [43414] => stdClass Object ( [nazev] => [seo_title] => Honors and Awards [seo_desc] => [autor] => [autor_email] => [obsah] =>

Rector's Award 2019

GACR PRESIDENT’S AWARD FOR EXCELLENT RESEARCH 2019

Neuron Impuls 2016

  • Neuron Impluls grants is awarded by endowment fund for research and science

Rectors award for young academics 2013 

 

Rectors award for young academics 2016

[urlnadstranka] => [obrazek] => [iduzel] => 43414 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/43414 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [43383] => stdClass Object ( [nazev] => Cover Pages [seo_title] => Cover Pages [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [iduzel] => 43383 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/43383 [sablona] => stdClass Object ( [class] => stranka_galerie_velka [html] => [css] => [js] => [autonomni] => 1 ) ) [43382] => stdClass Object ( [nazev] => Student's Thesis [seo_title] => Student's Thesis [seo_desc] => [autor] => [autor_email] => [obsah] =>

Dissertation

Graphene Synthesis by Carbon Nanotubes Exfoliation

Experimental work will focuse on carbon nanotubes exfoliation by oxidation or  alkaline metals intercalation. Carbon nanotubes and synthesised graphene ribbons will be characterized by Raman spectroscopy, FTIR, STM, AFM and other advanced methods.

2D Nanomaterials Synthesis -  „bottom-up“ Processes

2D inorganic materials based on MoS2 and similar substances show quite unique properties.  Materials will be synthesised from various  precursors under hydrothermal conditions. Process optimalization leads to preparation of materials with desired structure and number of layers. Characterization will be done by advanced analytical techiques like AFM, Raman spectroscopy and photoluminescence measurements.

Master Thesis

Synthesis and Electrocatalytic Properties of Layerd Carbides

This work will be focused on develepment of layerd carbides (so called MEX) synthesis and optimalization of its chemical exfoliation methods.  Student will study potential of exfoliated carbides use in electrocatalysis. Materials will be characterised by XPS, AFM, Raman spectroscopy and SEM/TEM.

Bachelor Thesis

Gas Detectors Based on Layerd Chalcogenides

Experimental work will be focused on synthesis and following exfoliation of 5th and 6th group dichalcogenides. Student will study their use in gas detection by impedance spectroscopy. Materials and sensoric structures will be characterised by  SEM, AFM, XPS and Raman spectroscopy.

Consultant: Ing. Jan Luxa

Composite Materials Based on Graphene Oxide

Graphene Oxide belongs to intensively studied nanomaterials.  This work will be focused on composite synthesis optimalization.  Synthesised material will be characterised by XPS, SEM, AFM, FT-IR  and Raman spectroscopy.

Consultant: Ing. Daniel Bouša

Layerd Carbides (MEX Phase) synthesis

Experimental work will be focused on preparation of layerd carbides with general composition Tix+1AlCx. Student will also focuse on optimalization of chemical exfoliation. Exfoliated MEX phase will be tested for biologically active substances detection and their use in electrocatalysis will be examined.

Consultant: Ing. Jan Luxa

Graphene Based Quantum Dots

Experimental work will be focused on preparation of graphene based quantum dots. Student will study their reactivity and influence of chemical composition on luminescence properties.

Consultant: Ing. Vlastimil Mazánek

Carbon Membranes for Separation Applications

Experimental work will be focused on preparation of graphene and carbon nanotubes based membranes. Membranes will be used for separation of gas and organic substances vapours.  Student will focuse on optimalization of chemical composition and mechanical properties. Membrane separation properties will be studied. 

Consultant: Ing. Vlastimil Mazánek

Pnictogenides Photocatalytic Applications

Experimental work will be focused on synthesis of orthorombic layerd phosphorus  and preparation of its solid solutions with arsenic. This work will also focuse on exfoliation methods.  Materials will be tested for their organic pollutants photocatalytic degradation abilities.

Consultant: Ing. Daniel Bouša

Advanced Synthesis of Graphene Derivatives

Experimental work is focused on hydrogenated graphene synthesis.  Student will study mechanism of nucleophilic substitution and radical reaction on hydrogenated graphene. This materials will be studied for their potential use in detection of biologically active substances.

Consultant: Ing. Vlastimil Mazánek

Preparation of Layered Chalcogenides Nanustructures by Mechanic Exfoliation

 

This work will be focused on development of mechanical exfoliation methods of layerd materials. The target will be to obtain stable colloidal suspension of monolayers of exfoliated transition metal chalcogenides. Next part of this work will focuse on preparation of nanostructures based on these materials. This materials will be tested for preparation of chemical sensors and optical detectors.

[urlnadstranka] => [iduzel] => 43382 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/43382 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [43271] => stdClass Object ( [nazev] => Alumni [seo_title] => Alumni [seo_desc] => [autor] => [autor_email] => [obsah] =>

Joachim Haemers

Joachim Haemers (originál)

My stay at the UCT Prague and the internship research group of Dr Sofer allowed me to discover the world of research. It was the first time I had to work in a research laboratory, and this experience allowed me to develop a certain autonomy in bibliographic research and proper work in the lab.

Besides that, I could discover many apparatus thanks to the help of the peoples working in the lab.

I was well welcomed by Dr Sofer, who showed great support helping when organising my arrival with the paperwork notably. The welcome from the peoples in the group was great and helped me getting at ease quickly within the group.

 

Current Ph. D. Thesis:

Mgr. Marie Boháčková (od 1.9. 2016)

  • Graphene Dopping - Syntesis of Materials with Defined Electric Parameters

 

Defended Dissertations:

Ing. Kateřina Szőkölová (11/2019)

  • Environmental Applications of Carbon-based Nanomaterials

Ing. Daniel Bouša (od 1.9.2014)

  • Graphene Hydrogenation - Graphane, New Material for Microelectronics

Ing. Jan Luxa (10/2018)

  • Transition Metals Dichalcogeneides

Ing. Vlastimil Mazánek (10/2018)

  • Fluorinated Graphene

Ing. Petr Šimek (8/2018)

  • Thin Layers of Magnetically Dopped GaN

 

Defended Master Thesis:

Bc. Petr Marvan (2018)

  • Preparation of Layerd Gallium and Indium Chalcogenides and Study of Their Senzoric Properties

Bc. Pavel Vosecký (2018)

  • Preparation of Layerd Rhenium Dichalcogenides and Study of Their Electrochemical Properties

Bc. Michal Nováček (2.6.2015)

  • Influence of Reaction Conditions on Graphite Chemical Oxidation - Graphene Oxide Synthesis Optimalization

Bc. Jan Luxa (3.6.2014)

  • Optimalization of Graphene Deposition on Metal Substrates and its Transfer

Bc. Veronika Číková (3.9.2014)

  • Graphene Syntesis and Chemical Modification by Reactions With Diazonium Salts

Bc. Pavla Hošinská (3.9.2014)

  • Synthesis of Quantum Dots based on AIIBVI Semiconductors

Bc. Ondřej Jankovský  (1.6.2011)

  • Influence of Preparation Conditions on Thermoelectric Properties of  Ca3Co4O9+d

Bc. Ladislav Nádherný (1.6.2011)

  • Thin Layers of Magnetic Semiconductors Based on ZnO

Defended Bachelor Thesis:

Michael Korytářová (2017)

  • Graphene Derivates Synthesis and Their Antimicrobial Effect

Pavel Vosecký (28.6.2016)

  •  Layerd Dichalcogenides of Transition Metals for Detection of Biologically Active Substances

Alena Libánská (23.6.2016)

  • Chemically Reduced Graphen For Electrochemical Detection of Organic Nitro and Peroxo Substances

Beáta Štrochová (2.9.2015)

  • Nitrogen Dopped Graphene and Graphene Oxide for Electrochemical Detection of Biologically Active Substances

Radek Brodil (26.8.2013)

  • Chemical Modification of Graphene Oxide - Halogenated Derivates Synthesis

Michal Nováček (24.6.2013)

  • Synthesis and Characterization of Graphene Oxide

Jan Luxa (25.6.2012)

  • Preparation and Characterization of Carbon Nanolayers on Metal Substrates
[urlnadstranka] => [obrazek] => [iduzel] => 43271 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/43217 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [43149] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

2D Materials Property Studies:

 

Carbon Based Nanomaterials (Graphene and its Derivatives, Carbon Nanotubes)

  • Chemistry of graphene and its derivatives (e.g. fluorographene, graphan, hydroxographene)
  • Carbon nanostripes and other nanostructures
  • Electrocatalysis and sensors based on graphene and its derivatives
  • Magnetic properties of carbon nanomaterials
  • Study of chemical composition and functionalization influence on electrochemical properties
  • Preparation of composite materials and membranes based on carbon nanostructures

 

Layered pnictogens (black phosphorus, arsenic, antimony, bismuth)

  • Study of preparation and expholiation processes optimalization
  • Chemical derivatization and doping options
  • Study of expholiated pnictogens application potential

 

Layered Forms of  Silicon and Germanium - Silicen, Germanene and its Derivatives

  • New synthetic methods of silicen and germanene derivatives preparations 
  • Properties and application potentiel studies of new materials

 

Layered Chalcogenides

  • Dichalcogenides of transition metals and its chemical modifications
  • Chalcogenides of p-elements (e.g. InSe)
  • Crystal growth study, doping, research on relationships between structure and properties     

 

Materials Based on Layered MAX carbides

  • Research on chemical and mechanical expholiation methods
  • New carbides systems development,  boron and nitrogen stubstitution possibilities
  • Study of high temperature synthesis processes

 

Applied research focus on 2D materials 

  • Electrocatalysis (catalysts for oxidation and reduction of hydrogen and oxygen)
  • Electrochemical sensors for biologically active substances and pollutants
  • Electrochemical energy sources (Li and Na iont bateries, supercapacitors)
  • Nanoelectronics and optoelectronics (OLED, transistors, photodetectors) 
  • 2D Utilization for membrane separation
  • Development of new 2D materials expholiation methods
  • CVD and PVD processes studies for 2D materials preparations

 

2D materials chracterization

  • Morphology: optical and electron microscopy (SEM/TEM), atomic force  microscopy (AFM/STM)
  • Structure: X-ray diffraction (including asymetric Omega-Q scan)
  • Chemical composition and purity: AEM, XPS/UPS/AES, ISS, SIMS, XRF, SEM/EDS, Raman and FT-IR spectroscopy
  • Electrical transport: conductivity type,  mobility,  charge carriers concentration (resistivity, Hall constant)
  • Thermal transport
  • Magnetism
  • Optical properties:  transmittance, photoluminescence, reflectivity (layer thickness), refractive index, wavelength attenuation
  • Theoretical modeling of electron sturucters and phase equilibrium 
[urlnadstranka] => [iduzel] => 43149 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/research [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [43001] => stdClass Object ( [nazev] => Grants [seo_title] => Grants [seo_desc] => [autor] => [autor_email] => [obsah] =>

Current Grants

Two dimensional layered transition-metals-dichalcogenides / nanostructured carbon composites for elechtrochemical energy storage applications

  • Principal Investigator:   Prof. Ing. Zdenek Sofer, PhD.
  • GACR 20-16124J
  • 1.1.2020-31.12.2022

Two-dimensional nanomaterials for application in electronics

  • Principal Investigator: Prof. Ing. Zdenek Sofer, PhD.
  • MSMT INTER-EXCELLENCE: ACTION (LTAUSA19) LTAUSA19034
  • 1.11.2019 - 31.12.2022

Chemistry in two dimensions - beyonde graphene

  • Principal InvestigatorI: Prof. Ing. Zdenek Sofer, PhD.
  • GACR 19-26910X
  • 1.1.2019-31.12.2023

Carbon (Nano)structures and Its Modification for Composites

  • co-investigator:  Doc. Ing. Zdeněk Sofer, Ph.D.
  • TAČR Epsilon TH03020348
  • 1.1. 2018-31.12. 2021

Advanced Functional Nanorobots

  • principal investigator: RNDr. Martin Pumera, Ph.D.
  • MŠMT OP VVV: reg. č. CZ.02.1.01/0.0/0.0/15_003/0000444 funded by EFRR
  • 15.12.2017-31.10.2022

Finished Grants

New Efficient Membranes for Effective Separation H2 / CO2 (HySME) 

  • principal investigator:  doc. Ing. Karel Friess Ph.D. (Ústav fyzikální chemie, VŠCHT Praha)
  • GAČR 17-05421S
  • 1.1.2017-31.12.2019

Nanostructers of Layerd  Transition Metals Dichalcogenides  for Electrocatalysis

  • principal investigator: Doc. Ing. Zdeněk Sofer, Ph.D.
  • GAČR 17-11456S
  • 1.1. 2017-31.12. 2019

Nanocatalysis in Two Dimensions - New Effective Catalysts for Clean Energy 

  • principal investigator: Doc. Ing. Zdeněk Sofer, Ph.D.
  • Nadační fond Neuron na podporu vědy
  • 1.1. 2017-31.12. 2019

Ion Beams Use for Graphene Based Structures Modifications

  • principal investigator: Doc. Ing. Zdeněk Sofer, Ph.D.
  • GAČR 16-05167S
  • 1.1. 2016-31.12. 2018

Chemical Modifications of Graphene Based Materials: Synthesis of Graphan and Halogen Graphenes

  • principal investigator: Doc. Ing. Zdeněk Sofer, Ph.D.
  • GAČR 15-09001S
  • 1.1. 2015-31.12. 2017

New 2D Layered Chlcogenides Thin Layers and 3D Nanostructures: Synthesis and Characterisation

  • principal investigator: prof. Ing. Tomáš Wágner, DrSc. (Univerzita Pardubice)
  • GAČR 15-07912S
  • 1.1.2015-31.12.2017

Center for Analysis and Diagnostic of Physical and Chemical Properties of Advanced Materials

  • principal investigator: prof. Ing. Květoslav Růžička, CSc. (Ústav fyzikální chemie, VŠCHT Praha)
  • MŠMT: Centralizovaný rozvojový projekt C16
  • 1.1.2014-31.12.2014

Thin Layers of Magnetically Doped GaN

  • principal investigator: prof. Dr. Ing. David Sedmidubský
  • GAČR; 13-20507S
  • 1.2.2013-31.12.2016

Laboratory Tasks Focused on Carbon Based Nanomaterials

  • principal investigator: Doc. Ing. Zdeněk Sofer, Ph.D.
  • FRVŠ 433 /2013
  • 1.1. 2013-31.12. 2013

Oxide Thermoelectric Materials for Conversion of High Temperature Waste Heat

  • principal investigator:   Ing. Jiří Hejmánek, CSc. (Fyzikální Ústav AVČR, v.v.i.)
  • GAČR 13-17538S
  • 1.2.2013-31.12.2015

Porose Ceramics with Controlled Elasticity and Heat Conductivity

  • principal investigator:  prof. Dr. Dipl.-Min. Willy Pabst (Ústav skla a keramiky, VŠCHT Praha)
  • GAČR P108/12/1170
  • 1.1.2013-31.12.2014

Development and Innovation of Inorganic Chemistry Laboratory Tasks

  • principal investigator: prof. Dr. Ing. David Sedmidubský
  • FRVŠ 317/2012
  • 1.1.2013-31.12.2013

Interdisciplinary Laboratory Tasks for Material Engineering

  • principal investigator:  prof. Dr. Ing. David Sedmidubský
  • MŠMT Centralizovaný rozvojový projekt C24
  • 1.1.2011-31.12.2011

Magnetic Semiconductors based on ZnO

  • principal investigator: prof. Dr. Ing. David Sedmidubský
  • GAČR; 104/09/0621
  • 1.1.2009-31.12.2011

Thermoelectric  Cobaltites

  • principal investigator:  Ing. Jiří Hejmánek, CSc. (Fyzikální Ústav AVČR, v.v.i.)
  • GAČR 203/09/1036
  • 1.1.2009-31.12.2011

Thin Layers of Magnetically Dopped AIIIN Semiconductors for Application in Spintronicsprincipal investigator: prof. Dr. Ing. David Sedmidubský

  • GAČR; 104/06/0642
  • 1.1.2006-31.12.2008
[urlnadstranka] => [obrazek] => [iduzel] => 43001 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/43001 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29319] => stdClass Object ( [obsah] => [iduzel] => 29319 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [42122] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [obsah] =>

2020

2019

  • Beladi-Mousavi, S. M.;  Pourrahimi, A. M.;  Sofer, Z.; Pumera, M., Atomically Thin 2D-Arsenene by Liquid-Phased Exfoliation: Toward Selective Vapor Sensing. Advanced Functional Materials, 2019, 29 (5), 1807004.
  • Mazánek, V.;  Luxa, J.;  Matějková, S.;  Kučera, J.;  Sedmidubský, D.;  Pumera, M.; Sofer, Z., Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis. ACS Nano, 2019, 13 (2), 1574-1582.
  • Chia, H. L.;  Latiff, N. M.;  Gusmão, R.;  Sofer, Z.; Pumera, M., Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets. Chemistry – A European Journal, 2019, 25 (9), 2242-2249.
  • Luxa, J.;  Mazánek, V.;  Mackova, A.;  Malinsky, P.;  Akhmadaliev, S.; Sofer, Z., Tuning of electrocatalytic properties of MoS2 by chalcogenide ion implantation. Applied Materials Today, 2019, 14, 216-223.
  • Beladi-Mousavi, S. M.;  Khezri, B.;  Krejčová, L.;  Heger, Z.;  Sofer, Z.;  Fisher, A. C.; Pumera, M., Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces. ACS Applied Materials & Interfaces, 2019, 11 (14), 13359-13369.
  • Malinský, P.;  Cutroneo, M.;  Sofer, Z.;  Szőkölová, K.;  Böttger, R.;  Akhmadaliev, S.; Macková, A., Structural and compositional modification of graphene oxide by means of medium and heavy ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019.
  • Cutroneo, M.;  Torrisi, L.;  Havranek, V.;  Mackova, A.;  Malinsky, P.;  Torrisi, A.;  Stammers, J.;  Sofer, Z.;  Silipigni, L.;  Fazio, B.;  Fazio, M.; Böttger, R., Characterization of graphene oxide film by implantation of low energy copper ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019.
  • Cutroneo, M.;  Torrisi, L.;  Havranek, V.;  Mackova, A.;  Malinsky, P.;  Torrisi, A.;  Silipigni, L.;  Fernandes, S.;  Sofer, Z.; Stammers, J., Localized modification of graphene oxide properties by laser irradiation in vacuum. Vacuum, 2019, 165, 134-138.
  • Sturala, J.;  Sofer, Z.; Pumera, M., Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie, 2019.
  • Macková, A.;  Malinský, P.;  Jagerová, A.;  Mikšová, R.;  Sofer, Z.;  Klímová, K.;  Mikulics, M.;  Böttger, R.;  Akhmadaliev, S.; Oswald, J., Damage accumulation and implanted Gd and Au position in a- and c-plane GaN. Thin Solid Films, 2019, 680, 102-113.
  • Cutroneo, M.;  Havranek, V.;  Mackova, A.;  Malinsky, P.;  Torrisi, L.;  Silipigni, L.;  Fazio, B.;  Torrisi, A.;  Szokolova, K.;  Sofer, Z.; Stammers, J., Effects of the ion bombardment on the structure and composition of GO and rGO foils. Materials Chemistry and Physics, 2019, 232, 272-277.
  • Cutroneo, M.;  Havranek, V.;  Mackova, A.;  Malinsky, P.;  Torrisi, L.;  Lorincik, J.;  Luxa, J.;  Szokolova, K.;  Sofer, Z.; Stammers, J., Localized deoxygenation of graphene oxide foil by ion microbeam writing. Vacuum, 2019, 163, 10-14.
  • Gusmão, R.;  Browne, M. P.;  Sofer, Z.; Pumera, M., The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochemistry Communications, 2019, 102, 83-88.
  • Boháčová, M.;  Zetková, K.;  Knotek, P.;  Bouša, D.;  Friess, K.;  Číhal, P.;  Lanč, M.;  Hrdlička, Z.; Sofer, Z., Mildly oxidized SWCNT as new potential support membrane material for effective H2/CO2 separation. Applied Materials Today, 2019, 15, 335-342.
  • Mazánek, V.;  Pavlikova, L.;  Marvan, P.;  Plutnar, J.;  Pumera, M.; Sofer, Z., Fluorine saturation on thermally reduced graphene. Applied Materials Today, 2019, 15, 343-349.
  • Manzanares Palenzuela, C. L.;  Pourrahimi, A. M.;  Sofer, Z. k.; Pumera, M., Mix-and-Read No-Wash Fluorescence DNA Sensing System Using Graphene Oxide: Analytical Performance of Fresh Versus Aged Dispersions. ACS Omega, 2019, 4 (1), 1611-1616.
  • Zhong, C.;  Sangwan, V. K.;  Kang, J.;  Luxa, J.;  Sofer, Z. k.;  Hersam, M. C.; Weiss, E. A., Hot Carrier and Surface Recombination Dynamics in Layered InSe Crystals. The journal of physical chemistry letters, 2019, 10 (3), 493-499.
  • Krejčová, L.;  Leonhardt, T.;  Novotný, F.;  Bartůněk, V.;  Mazánek, V.;  Sedmidubský, D.;  Sofer, Z.; Pumera, M., A Metal‐Doped Fungi‐Based Biomaterial for Advanced Electrocatalysis. Chemistry–A European Journal, 2019.
  • Mayorga‐Martinez, C. C.;  Gusmão, R.;  Sofer, Z.; Pumera, M., Pnictogen‐Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie International Edition, 2019, 58 (1), 134-138.
  • Fojtů, M.;  Balvan, J.;  Raudenská, M.;  Vičar, T.;  Bouša, D.;  Sofer, Z.;  Masařík, M.; Pumera, M., Black Phosphorus Cytotoxicity Assessments Pitfalls: Advantages and Disadvantages of Metabolic and Morphological Assays. Chemistry–A European Journal, 2019, 25 (1), 349-360.
  • Khezri, B.;  Mousavi, S. M. B.;  Sofer, Z.; Pumera, M., Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Nanoscale, 2019.
  • Pourrahimi, A. M.;  Villa, K.;  Manzanares Palenzuela, C. L.;  Ying, Y.;  Sofer, Z.; Pumera, M., Catalytic and Light‐Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials, 2019, 1808678.
  • Marvan, P.;  Mazánek, V.; Sofer, Z., Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale, 2019, 11 (10), 4310-4317.
  • Gusmão, R.;  Sofer, Z.; Pumera, M., Electrocatalysis: Exfoliated Layered Manganese Trichalcogenide Phosphite (MnPX3, X= S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution (Adv. Funct. Mater. 2/2019). Advanced Functional Materials, 2019, 29 (2), 1970008.
  • Khezri, B.;  Beladi Mousavi, S. M.;  Krejčová, L.;  Heger, Z.;  Sofer, Z.; Pumera, M., Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Advanced Functional Materials, 2019, 29 (4), 1806696.
  • Gusmão, R.;  Sofer, Z.; Pumera, M., Exfoliated Layered Manganese Trichalcogenide Phosphite (MnPX3, X= S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Advanced Functional Materials, 2019, 29 (2), 1805975.
  • Browne, M. P.;  Sofer, Z.; Pumera, M., Layered and two dimensional metal oxides for electrochemical energy conversion. Energy & Environmental Science, 2019, 12 (1), 41-58.
  • Sedmidubský, D.;  Sofer, Z.;  Huber, Š.;  Luxa, J.;  Točík, R.;  Mahnel, T.; Růžička, K., Chemical bonding and thermodynamic properties of gallium and indium monochalcogenides. The Journal of Chemical Thermodynamics, 2019, 128, 97-102.

 

2018

  • Lim, C.S.; Sofer, Z.; Plutnar, J.; Pumera, M., Fluorographenes for Energy and Sensing Application: The Amount of Fluorine Matters. ACS Omega 2018, 3 (12), 17700-17706.
  • Macková, A.; Malinský, P.; Jágerová, A.; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Mikulics, M.; Böttger, R.; Akhmadaliev, S., Damage accumulation and structural modification in c-plane and a-plane GaN implanted with 400 keV Kr and Gd ions. Surface and Coatings Technology 2018, 355, 22-28.
  • Rahmanian, E.; Mayorga-Martinez, C.C.; Malekfar, R.; Luxa, J.; Sofer, Z.; Pumera, M., 1T-Phase Tungsten Chalcogenides (WS2, WSe2, WTe2) Decorated with TiO2 Nanoplatelets with Enhanced Electron Transfer Activity for Biosensing Applications. ACS Applied Nano Materials 2018, 1 (12), 7006-7015.
  • Latiff, N.M.; Mayorga-Martinez, C.C.; Sofer, Z.; Fisher, A.C.; Pumera, M., Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today 2018, 13, 310-319.
  • Jankovský, O.; Storti, E.; Schmidt, G.; Dudczig, S.; Sofer, Z.; Aneziris, C.G., Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Applied Materials Today, 2018, 13, 24-31.
  • Pourrahimi, A.M.; Villa, K.; Ying, Y.; Sofer, Z.; Pumera, M., ZnO/ZnO2/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Applied Materials & Interfaces, 2018, 10 (49), 42688-42697.
  • Villa, K.; Palenzuela, C.L.M.; Sofer, Z.; Matějková, S.; Pumera, M., Metal-Free Visible-Light Photoactivated C3N4 Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities. ACS Nano, 2018, 12 (12), 12482-12491.
  • Hermanová, S.; Bouša, D.; Mazánek, V.; Sedmidubský, D.; Plutnar, J.; Pumera, M.; Sofer, Z., Fluorographene and graphane as an excellent platform for enzyme biocatalysis. Chemistry–A European Journal, 2018, 24 (63), 16833-16839.
  • Browne, M.P.; Novotný, F.; Sofer, Z.; Pumera, M., 3D Printed Graphene Electrodes’ Electrochemical Activation. ACS Applied Materials & Interfaces 2018, 10 (46), 40294-40301.
  • Sturala, J.; Ambrosi, A.; Sofer, Z.; Pumera, M., Covalent functionalization of exfoliated arsenic with chlorocarbene. Angewandte Chemie 2018, 130 (45), 15053-15056.
  • Latiff, N.M.; Mayorga-Martinez, C.C.; Khezri, B.; Szokolova, K.; Sofer, Z.; Fisher, A.C.; Pumera, M., Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem 2018, 12, 1-9.
  • Macková, A.; Malinský, P.; Jágerová, A.; Sofer, Z.; Sedmidubský, D.; Klímová, K.; Böttger, R.; Akhmadaliev, S., Damage accumulation and structural modification in a‐ and c‐plane GaN implanted with 400‐keV and 5‐MeV Au+ ions. Surface and Interface Analysis 2018, 50 (11), 1099-1105.
  • Pumera, M.; Gusmão, R.; Sofer, Z., Metal phosphorous trichalcogenides (MPCh3): from synthesis to contemporary energy challenges. Angewandte Chemie 2018, DOI: https://doi.org/10.1002/ange.201810309.
  • Villa, K.; Krejčová, L.; Novotný, F.; Heger, Z.; Sofer, Z.; Pumera, M., Cooperative Multifunctional Self‐Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Advanced Functional Materials 2018, 28 (43), 1804343.
  • Kang, J.; Wells, S.A.; Sangwan, V.K.; Lam, D.; Liu, X.; Luxa, J.; Sofer, Z.; Hersam, M., Solution‐Based Processing of Optoelectronically Active Indium Selenide. Advanced Materials 2018, 30 (38), 1802990.
  • Dong, Q.; Latiff, N.M.; Mazánek, V.; Rosli, N.F.; Chia, H.L.; Sofer, Z.; Pumera, M., Triazine-and Heptazine-Based Carbon Nitrides: Toxicity. ACS Applied Nano Materials 2018, 1 (9), 4442-4449.
  • Plutnar, J.; Sofer, Z.; Pumera, M., Products of Degradation of Black Phosphorus in Protic Solvents. ACS Nano 2018, 12 (8), 8390-8396.
  • Plutnar, J.; Šturala, J.; Mazánek, V.; Sofer, Z.; Pumera, M., Fluorination of Black Phosphorus—Will Black Phosphorus Burn Down in the Elemental Fluorine? Advanced Functional Materials 2018, 28 (35), 1801438.
  • Bouša, D.; V Mazánek, V.; Sedmidubský, D.; Jankovský, O.; Pumera, M.; Sofer, Z., Hydrogenation of Fluorographite and Fluorographene: An Easy Way to Produce Highly Hydrogenated Graphene. Chemistry–A European Journal 2018, 24 (33), 8350-8360.
  • Chia, X.; Sutrisnoh, N.A.A.; Sofer, Z.; Luxa, J.; Pumera, M., Morphological Effects and Stabilization of the Metallic 1T Phase in Layered V‐, Nb‐, and Ta‐Doped WSe2 for Electrocatalysis. Chemistry–A European Journal 2018, 24 (13), 3199-3208.
  • Malinský, P.; Macková, A.; Florianová, M.; Cutroneo, M.; Hnatowicz, V.; Boháčová, M.; Szőkölová, K.; Böttger, R.; Sofer, Z., The Structural and Compositional Changes of Graphene Oxide Induced by Irradiation With 500 keV Helium and Gallium Ions. physica status solidi (b), 2018, 1800409.
  • Mazánek, V.; Mayorga-Martinez, C.C.; Bouša, D.; Sofer, Z.; Pumera, M., WSe2 nanoparticles with enhanced hydrogen evolution reaction prepared by bipolar electrochemistry: application in competitive magneto-immunoassay. Nanoscale 2018, 10 (48), 23149-23156.
  • Lojka, M.; Jankovský, O.; Sedmidubský, D.; Mazánek, V.; Bouša, D.; Pumera, M.; Matějková, A.; Sofer, Z., Synthesis and properties of phosphorus and sulfur co-doped graphene. New Journal of Chemistry 2018, 42 (19), 16093-16102.
  • Gusmão, R.; Sofer, Z.; Luxa, J.; Pumera, M., Layered franckeite and teallite intrinsic heterostructures: shear exfoliation and electrocatalysis. Journal of Materials Chemistry A 2018, 6 (34), 16590-16599.
  • Mazánek, V.; Nahdi, H.; Luxa, J.; Sofer, Z.; Pumera, M., Electrochemistry of layered metal diborides. Nanoscale 2018, 10 (24), 11544-11552.
  • Plutnar, J.; Pumera, M.; Sofer, Z., The chemistry of CVD graphene. Journal of Materials Chemistry C 2018, 6 (23), 6082-6101.
  • Wang, Y.; Mayorga-Martinez, C.C.; Chia, X.; Sofer, Z.; Pumera, M., Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry. Nanoscale 2018, 10 (15), 7298-7303.
  • Kuckova, S.; Hamidi-Asl, E.; Sofer, Z.; Marvan, P.; De Wael, K.; Sanyova, J.; Janssens, K., A simplified protocol for the usage of new immuno-SERS probes for the detection of casein, collagens and ovalbumin in the cross-sections of artworks. Analytical Methods 2018, 10 (9), 1054-1062.
  •  
  • Rosli, N. F.; Latiff, N. M.; Sofer, Z.; Fisher, A. C.; Pumera, M., In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Applied Materials Today 2018, 11, 200-206.
  • Gusmão, R.; Sofer, Z.; Pumera, M., Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano  2018, 12 (6), 5666-5673.
  • Zoller, F.; Peters, K.; Zehetmaier, P. M.; Zeller, P.; Döblinger, M.; Bein, T.; Sofer, Z. k.; Fattakhova‐Rohlfing, D., Lithium‐Ion Batteries: Making Ultrafast High‐Capacity Anodes for Lithium‐Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites. Advanced Functional Materials 2018, 28 (23), 1870155.
  • Zoller, F.; Peters, K.; Zehetmaier, P. M.; Zeller, P.; Döblinger, M.; Bein, T.; Sofer, Z. k.; Fattakhova‐Rohlfing, D., Making Ultrafast High‐Capacity Anodes for Lithium‐Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites. Advanced Functional Materials  2018, 28 (23), 1706529.
  • Chanda, D.; Dobrota, A. S.; Hnát, J.; Sofer, Z.; Pašti, I. A.; Skorodumova, N. V.; Paidar, M.; Bouzek, K., Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium. International Journal of Hydrogen Energy  201843 (27), 12129-12139.
  • Leonardi, S.; Wlodarski, W.; Li, Y.; Donato, N.; Sofer, Z.; Pumera, M.; Neri, G., A highly sensitive room temperature humidity sensor based on 2D-WS 2 nanosheets. FlatChem  2018, 9, 21-26.
  • Malinský, P., Cutroneo, M., Macková, A., Hnatowicz, V., Florianová, M., Bohačová, M., Bouša, D., Sofer, Z., Graphene oxide layers modified by irradiation with 1.2 MeV He+ ions. Surface and Coatings Technology  2018, 342, 220-225.
  • Manzanares Palenzuela, C. L.; Luxa, J.; Sofer, Z. k.; Pumera, M., MoSe2 Dispersed in Stabilizing Surfactant Media: Effect of the Surfactant Type and Concentration on Electron Transfer and Catalytic Properties. ACS applied materials & interfaces  2018, 10 (21), 17820-17826.
  • Bouša, D., Mayorga-Martinez, C. C., Mazánek, V., Sofer, Z. k., Boušová, K. n., & Pumera, M., MoS2 Nanoparticles as Electrocatalytic Labels in Magneto-Immunoassays. ACS applied materials & interfaces  2018, 10 (19), 16861-16866.
  • Rosli, N. F., Mayorga-Martinez, C. C., Latiff, N. M., Rohaizad, N., Sofer, Z. k., Fisher, A. C., & Pumera, M., Layered PtTe2 Matches Electrocatalytic Performance of Pt/C for Oxygen Reduction Reaction with Significantly Lower Toxicity. ACS Sustainable Chemistry & Engineering  2018, 6 (6), 7432-7441.
  • Sturala, J., Luxa, J., Pumera, M., & Sofer, Z., Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry–A European Journal 2018, 24 (23), 5992-6006.
  • Manzanares Palenzuela, C. L., Novotný, F., Krupička, P., Sofer, Z. k., & Pumera, M., 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis.  Analytical chemistry  2018, 90 (9), 5753-5757.
  • Michalcová, A., Marek, I., Knaislová, A., Sofer, Z., & Vojtěch, D., Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy. Materials  2018, 11 (2), 199.
  • Mazánek, V., Matějková, S., Sedmidubský, D., Pumera, M., & Sofer, Z. One‐Step Synthesis of B/N Co‐doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities. Chemistry-A European Journal, 24(4),  2018. 928-936.
  • Macková, A., Malinský, P., Jagerová, A., Sofer, Z., Klímová, K., Sedmidubský, D.,  Akhmadaliev, S. . Damage accumulation and structural modification in c-plane and a-plane GaN implanted with 400 keV Kr and Gd ions. Surface and Coatings Technology, 2018, DOI: https://doi.org/10.1016/j.surfcoat.2018.02.097.
  • Luxa, J., Vosecký, P., Mazánek, V., Sedmidubský, D., Pumera, M., & Sofer, Z. Cation-Controlled Electrocatalytical Activity of Transition-Metal Disulfides. ACS Catalysis, 2018, 8 2774-2781.
  • Malinský, P., Cutroneo, M., Macková, A., Hnatowicz, V., Florianová, M., Boháčová, M., Sofer, Z. Graphene oxide layers modified by irradiation with 1.2 MeV He+ ions. Surface and Coatings Technology. 2018, 342, 220-225.
  • Rosli, N. F., Latiff, N. M., Sofer, Z., Fisher, A. C., & Pumera, M. In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Applied Materials Today  2018, 11, 200-206.
  • Gusmão, R., et al., Black Phosphorus Synthesis Path Strongly Influences Its Delamination, Chemical Properties and Electrochemical Performance. ACS Applied Energy Materials, 2018, 1(2), 503-509.
  • Michalcová, A., et al., Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy. Materials, 2018, 1 (2), 503-509.
  • Mayorga-Martinez, C.C., et al., Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale 2018, 10, 1540-1546.

 

2017

 

2016

  • Macková, A.; Malinský, P.; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Veselý, M.; Boettger, R., Structural and optical properties of metal ion implanted GaN. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371, 254-257.
  • Luxa, J.; Jankovský, O.; Sedmidubský, D.; Medlín, R.; Maryško, M.; Pumera, M.; Sofer, Z., Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS2 and WS2. Nanoscale, 2016, 8, 1960-1967.
  • Chia, X.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Sedmidubsky, D.; Pumera, M., Anti-MoS2 Nanostructures: Tl2S and its Electrochemical and Electronic Properties. ACS Nano 2016 10 (1), 112-123.
  • Tan, S.M.; Chua, C.K.; Sedmidubsky, D.; Sofer, Z.; Pumera, M., Electrochemistry of Layered GaSe and GeS: Applications to ORR, OER and HER. Physical Chemistry Chemical Physics 2016, 18, 1699-1711.
  • Wang, L.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Ambrosi, A.; Pumera, M., Rhenium Sulfide is Highly Catalytic for the Hydrogen Evolution Reaction: Experimental and Theoretical Study. Electrochemistry Communications, 2016, 63, 39-43.
  • Sofer, Z.; Bouša, D.; Luxa, J.; Mazánek, V.; Pumera, M., Few-layer black phosphorus nanoparticles. Chemical Communications, 2016, 52, 1563-1566.
  • Bartůněk, V.; Junková, J.; Babuněk, M.; Ulbrich, P.; Kuchař, M.; Sofer, Z., Synthesis of spherical amorphous selenium nano and micro particles with tunable sizes. Micro & Nano Letters 2016, 11 (2), 91-93.
  • Luxa, J.; Mazanek, V.; Bouša, D.; Sedmidubsky, D.; Pumera, M.; Sofer, Z., Highly Efficient Graphene - Amorphous Transition Metal Dichalcogenide (MoSx, WSx) Hybrid Electrocatalyst for Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3 (4), 565-571.
  • Loo, A. H.; Bonanni, A.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Pumera, M., Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Applied Materials & Interfaces, 2016, 8 (3), 1951-1957.
  • Sofer, Z.; Sedmidubský, D.; Huber, Š.; Luxa, J.; Bouša, D.; Boothroyd, C.; Pumera, M., Layered black phosphorus: strongly anisotropic magnetic, electronic and electron transfer properties. Angewandte Chemie International Edition, 2016, 55 (10), 3382-3386.
  • Bouša, D.; Luxa, J.; Sedmidubský, D.; Huber, Š.; Jankovský, O.; Pumera, M.; Sofer, Z., Nanosized Graphane (C1H1.14)n by Hydrogenation of Carbon Nanofibers by Birch Reduction Method. RSC Advances 2016, 6, 6475-6485.
  • Chia, X.; Ambrosi, A.; Lazar, P.; Sofer, Z.; Luxa, J.; Pumera, M., Layered Platinum Dichalcogenides (PtS2, PtSe2 and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Advanced Functional Materials, 2016, 26 (24), 4306-4318.
  • Chng, C.E.; Sofer, Z.; Pumera, M.; Bonanni, A., Doped and undoped graphene platforms: the influence of structural properties on the detection of polyphenols. Scientific Reports, 2016, 6, 20673-8.
  • Mikulics, M.; Arango, Y.; Winden, A.; Adam, R.; Hardtdegen, A.T.; Grützmacher, D.; Plinski, E.F.; Gregušová, D.; Novák, J.; Kordoš, P.; Moonshiram, A.; Marso, M.; Sofer, Z.; Lueth, H.; Hardtdegen, H., Direct electro-optical pumping for hybrid nanocrystal/III-nitride based nano-LEDs. Applied Physcs Letters 2016, 108, 061107-3.
  • Gusmao, R.; Sofer, Z.; Nováček, M.; Luxa, J.; Matějková, S.; Pumera, M., Multifunctional electrocatalytic hybrid carbon nanocables with highly active edges on their walls. Nanoscale 2016, 8, 6700-6711.
  • Tuček, J.; Błoński, P.; Sofer, Z.; Šimek, P.; Petr, M.; Pumera, M.; Otyepka, M.; Zbořil, R., Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials 2016, 28 (25), 5045-5053.
  • Jankovský, O.; Libánská, A.; Bouša, D.; Sedmidubský, D.; Matějková, S.; Sofer, Z., Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities. Chemistry - A European Journal 2016, 22 (25), 8627-8634.
  • Gusmão, R.; Sofer, Z.; Nováček, M.; Pumera, M., Contrasts between mild and harsh oxidation of carbon nanotubes on their properties and electrochemical performance. ChemElectroChem 2016, 3 (10), 1713-1719.
  • Thearle, R.A.; Sofer, Z.; Bouša, D.; Pumera, M., Impact Electrochemistry: Detection of Graphene Nanosheets Labelled with Metal Nanoparticles via Oxygen Reduction Mediation. ChemPhysChem 2016, 17 (13), 2096-2099.
  • Mayorga-Martinez, C.C.; Khezri, B.; Eng, A.Y.S.; Sofer, Z.; Ulbrich, P.; Pumera, M., Bipolar Electrochemical Synthesis of WS2 Nanoparticles and Their Application in Magneto-Immunosandwich Assay. Advanced Functional Materials 2016, 26 (23), 4094-4098.
  • Martinez, C.C.M.; Moo, J.G.S.; Khezri, B.; Song, P.; Fisher, A.C.; Sofer, Z.; Pumera, M., Self-Propelled Supercapacitors for On-Demand Circuit Configuration Based on WS2 Nanoparticles Micromachines. Advanced Functional Materials 2016, 26 (36), 6662-6667.
  • Luxa, J.; Fawdon, J.; Sofer, Z.; Mazánek, V.; Pumera, M., MoS2/WS2-graphene composites via thermal decomposition of tetrathiomolybdate/tetrathiotungstate for proton/oxygen electro reduction. ChemPhysChem  2016, 17 (18), 2890-2896.
  • Tan, S.M.; Sofer, Z.; Luxa, J.; Pumera, M., Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis 2016, 6 (7), 4594-4607.
  • Sofer, Z.; Luxa, J.; Jankovský, O.; Sedmidubský, D.; Bystroň, T.; Pumera, M., Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality? Angewandte Chemie International Edition  2016, 55, 11965-11969.
  • Bouša, D.; Luxa, J.; Mazánek, V.; Jankovský, O.; Sedmidubský, D.; Klímová, K.; Pumera, M.; Sofer, Z., Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances 2016, 6, 66884-66892.
  • Chua, X.J.; Luxa, J.; Eng, A.Y.S.; Tan, S.M.; Sofer, Z.; Pumera, M., The Negative Electrocatalytic Effects of p-doping Niobium and Tantalum on MoS2 and WS2 for Hydrogen Evolution Reaction and Oxygen Reduction Reaction. ACS Catalysis 2016, 6 (9), 5724-5734.
  • Chua, C.K.; Sofer, Z.; Pumera, M., Hydrogenated Graphene Functionalization: Transition Metal-Catalyzed Cross-Coupling Reaction of Allylic C-H bond. Angewandte Chemie International Edition 2016, 55 (36), 10751-11754.
  • Wang, Y.; Sofer, Z.; Luxa, J.; Pumera, M., Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Advanced Materials Interfaces 2016, 3 (23), 1600433.
  • Chia, X.; Ambrosi, A.; Lazar, P.; Sofer, Z.; Pumera, M., Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M=V, Nb, Ta; X= S, Se, Te). Journal of Materials Chemistry A 2016, 4, 14241-14253.
  • Latiff, N.M.; Wang, L.; Martinez, C.C.M.; Sofer, Z.; Fisher, A.C.; Pumera, M., Valence and Oxide Impurities in MoS2 and WS2 Dramatically Change Its Electrocatalytic Activity Towards Proton Reduction. Nanoscale 2016, 8, 16752-16760.
  • Jankovský, O.; Nováček, M.; Luxa, J.; Sedmidubský, D.; Fila, V.; Pumera, M.; Sofer, Z., The new member of graphene family – graphene acid. Chemistry - A European Journal 2016, 22 (48), 17416-17424.
  • Mayorga-Martínez, C.C.; Latiff, N.; Eng, A.Y.S.; Sofer, Z.; Pumera, M., Black Phosphorus Nanoparticle Labels for Immunoassays via Hydrogen Evolution Reaction Mediation. Analytical Chemistry 2016, 88 (20), 10074-10079.
  • Tian, H.; Wang, L.; Sofer, Z.; Pumera, M.; Bonanni, A., Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure. Scientific Reports 2016, 6, 33046-10.
  • Chia, X.; Lazar, P.; Sofer, Z.; Luxa, J.; Pumera, M., Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Electrocatalysis. The Journal of Physical Chemistry C 2016, 120 (42), 24098-24111.
  • Jankovský, O.; Lojka, M.; Novacek, M.; Luxa, J.; Sedmidubsky, D.; Pumera, M.; Kosina, J.; Sofer, Z., Reducing Emission of Carcinogenic By-Products in the Production of Thermally Reduced Graphene Oxide. Green Chemistry 2016, 18, 6618-6629.
  • Colin, W.; Sofer, Z.; Klímová, K.; Pumera, M., Microwave exfoliation of graphite oxides in H2S plasma for the synthesis of sulfur-doped graphenes as oxygen reduction catalysts. ACS Applied Materials & Interfaces 2016, 8 (46), 31849–31855.
  • Toh, R.J.; Sofer, Z.; Pumera, M., Catalytic Properties of Group 4 Transition Metal Dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). Journal of Material Chemistry A 2016, 4, 18322-18334.
  •  Toh, R.J.; Mayorga-Martínez, C.C.; Sofer, Z.; Pumera, M., MoSe2 Nanolabels for Electrochemical Immunoassays. Analytical Chemistry  2016, 88 (24), 12204–12209.

 

2015

  • Lim, C.S.; Sofer, Z.; Jankovský, O.; Wang, H.; Pumera, M., Unique Electrochemical Properties of SnO and PbO for Energy Applications. RSC Advances 2015, 5, 101949-101958.
  • Nasir, M. Z. M.; Sofer, Z.; Ambrosi, A.; Pumera, M., A limited anodic and cathodic electrochemical potential window of MoS2: limitations in electrochemical applications. Nanoscale 2015, 7, 3126-3129.
  • Jankovský, O.; Šimek, P.; Nováček, M.; Luxa, J.; Sedmidubský, D.; Pumera, M.; Macková, A.; Miksova, R.; Sofer, Z., Use of deuterium labelling – evidence of graphene hydrogenation by reduction of graphite oxide using aluminium in sodium hydroxide. RSC Advances 2015, 5, 18733-18739.
  • Jankovský, O.; Sofer, Z.; Vítek, J.; Šimek, P.; Růžička, K.; Mašková, S.; Sedmidubský D.; Thermodynamic properties of tubular cobaltite Bi3.7Sr11.4Co8O29-δThermochimica Acta 2015, 605, 22-27.
  • Chua, C.K.; Sofer, Z.; Luxa, J.; Pumera, M., Graphene selective nitrogen functionalization by Bucherer-type reaction. Chemistry - A European Journal 2015, 21 (22), 8090-8095.
  • Sofer, Z.; Šimek, P.; Mazánek, V.; Šembera, F.; Janoušek, Z.; Pumera, M., Fluorographane (C1HxF1-x-d)n: synthesis and properties. Chemical Communications 2015, 51, 5633-5636.
  • Chun, C.K.; Sofer, Z.; Jankovský, O.; Klimová, K.; Bakardjieva, S.; Hrdličková Kučková, Š.; Pumera, M., Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano 2015, 9 (3), 2548-2555.
  • Hermanová, S.; Zarevucká, M.; Bouša, D.; Pumera, M.; Sofer, Z., Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 2015, 7, 5852-5858.
  • Ambrosi, A.; Sofer, Z.; Pumera, M., 2H → 1T Transition and Hydrogen Evolution Activity of MoS2, MoSe2, WS2 and WSe2 Strongly Depends on the MX2 composition. Chemical Communications 2015, 51, 8450-8453.
  • Ambrosi, A.; Chia, X.; Sofer, Z.; Pumera, M., Enhancement of Electrochemical and Catalytic Properties of MoS2 through Ball-Milling. Electrochemistry Communications 2015, 54, 36-40.
  • Tan, S.M.; Ambrosi, A.; Sofer, Z.; Huber, Š.; Sedmidubský, D.; Pumera, M., Pristine Basal and Edge Plane-Oriented Molybdenite Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21 (19), 7170-7178.
  • Lim, C.S.; Sofer, Z.; Chua, C.K.; Jankovský, O.; Pumera, M., High Temperature Superconducting Materials as Bi-functional Catalysts for Hydrogen Evolution and Oxygen Reduction. Journal of Materials Chemistry A 2015, 3, 8346-8352.
  • Toh, R.J.; Eng, A.Y.S.; Sofer, Z.; Sedmidubský, D.; Pumera, M., Ternary Transition Metal Oxides (XY2O4) Nanoparticles with Spinel Structure: Systematic Study of X (Ni, Zn) and Y (Co, Mn) Composition on Oxygen Reduction Reaction. ChemElectroChem 2015, 2 (7), 982-987.
  • Wang, L.; Sofer, Z.; Luxa, J.; Pumera, M., MoxW1-xS2 Solid Solutions as Three-Dimensional Electrodes for Hydrogen Evolution Reaction. Advanced Materials Interfaces 2015, 2 (9), 1500041.
  • Bartůněk, V.; Junková, J.; Šuman, J.; Kolářová, K.; Rimpelová, S.; Ulbrich, P.; Sofer, Z., Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20. Materials Letters 2015, 152, 207-209.
  • Lim, C.S.; Sofer, Z.; Toh, R.J.; Eng, A.Y.S.; Luxa, J.; Pumera, M., Iridium- and Osmium-decorated Reduced Graphenes as Promising Catalysts. ChemPhysChem 2015, 16 (9), 1898-1905.
  • Wong, C.H.A.; Sofer, Z.; Pumera, M., Geographical and Geological Origin of Natural Graphite Heavily Influence the Electrical and Electrochemical Properties of Chemically Modified Graphenes. Chemistry - A European Journal 2015, 21 (23), 8435-8440.
  • Tan, S.M.; Sofer, Z.; Pumera, M., Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS2, and direct correlation to Pt hydrogen evolution reaction kinetics. Nanoscale 2015, 7 (19), 8879-8883.
  • Poh, H.L.; Sofer, Z.; Šimek, P.; Tomandl, I.; Pumera, M., Hydroboration of Graphene Oxide: Towards Stoichiometric Graphol and Hydoroxygraphane. Chemistry - A European Journal 2015, 21 (22), 8130-8136.
  • Mayorga-Martinez, C.C.; Ambrosi, A.; Eng, A.Y.S.; Sofer, Z.; Pumera, M., Transitionmetal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influences upon their capacitance. Electrochemistry Communications 2015, 56, 24-28.
  • Giovanni, M.; Ambrosi, A.; Sofer, Z.; Pumera, M., Impact electrochemistry of individual molybdenum nanoparticles. Electrochemistry Communications 2015, 56, 16-19.
  • Jankovský, O.; Šimek, P.; Klímová, K.; Sedmidubský, D.; Pumera, M.; Sofer, Z., Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon 2015, 89, 121-129.
  • Chia, X.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M., Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano 2015, 9 (5), 5164-5179.
  • Sofer, Z.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Šturala, J.; Kosina, J.; Mikšová, R.; Mackova, A.; Mikulics, M.; Pumera, M., Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key. ACS Nano 2015, 9 (5), 5478-5485.
  • Jankovský, O.; Šimek, P.; Luxa, J.; Sedmidubský, D.; Tomandl, I.; Macková, A.; Mikšová, R.; Malinský, P.; Pumera, M.; Sofer, Z., Definitive insight in the Graphite oxide reduction mechanism via deuterium labeling. ChemPlusChem 2015, 80 (9), 1399-1407.
  • Jankovský, O.; Sofer, Z.; Sedmidusbký, D., Phase equilibria in the Bi-Sr-Co-O system: towards the material tailoring of thermoelectric cobaltites. Journal of the European Ceramic Society 2015, 35 (11), 3005-3012.
  • Lim, C.S.; Chua, C.K.; Sofer, Z.; Klimová, K.; Boothroyd, C.; Pumera, M., Layered Transition Metal Oxyhydroxides as Tri-functional Electrocatalysts. Journal of Materials Chemistry A 2015, 3, 11920-11929.
  • Stejskal, J.; Leitner, J.; Sofer, Z., Nitrid gallia – nobelovský materiál. Československý Časopis pro Fyziku, 2015, 65 (1), 4-6.
  • Hui, K.H.; Ambrosi, A.; Sofer, Z.; Pumera, M.; Bonanni, A., The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification. Nanoscale 2015, 7 (19), 9040-9045.
  • Sofer, Z.; Jankovský, O.; Libánská, A.; Šimek, P.; Nováček, M.; Sedmidubský, D.; Macková, A.; Mikšová, R.; Pumera, M., Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling. Nanoscale 2015, 7 (23), 10535-10543.
  • Wang, H.; Sofer, Z.; Moo, J.G.S.; Pumera, M., Simultaneous self-exfoliation and autonomous motion of MoS2 particles in water. Chemical Communications 2015, 51, 9899-9902.
  • Loo, A.H.; Bonanni, A.; Sofer, Z.; Pumera, M., Transitional Metal / Chalcogen dependant interactions of Hairpin DNA with Transition Metal Dichalcogenides (MoS2, MoSe2, WS2 and WSe2). ChemPhysChem 2015, 16 (11), 2304-2306.
  • Lim, C.S.; Sofer, Z.; Mazánek, V.; Pumera, M., Layered Titanium Diboride: Towards Exfoliation and Electrochemical Applications. Nanoscale 2015, 7, 12527-12534.
  • Lim, C.S.; Sofer, Z.; Pumera, M., Electrochemistry of Cd3As2 - A 3D Analogue of Graphene. ChemNanoMat 2015, 1 (5), 359-363.
  • Teo, W.Z.; Chua, C.K.; Sofer, Z.; Pumera, M., Fluorinated Nanocarbons Cytotoxicity. Chemistry - A European Journal, 2015, 21 (27), 13020-13026.
  • Lim, C.S.; Tan, S.M.; Sofer, Z.; Pumera, M., Impact Electrochemistry of Layered Transition Metal Dichalcogenides. ACS Nano 2015, 9 (8), 8474-8483.
  • Mayorga-Martinez, C.C.; Ambrosi, A.; Eng, A.Y.S.; Sofer, Z.; Pumera, M., Metallic 1T-WS2 for selective impedimetric vapors sensing. Advanced Functional Materials 2015, 25 (35), 5611-5616.
  • Latiff, N.M.; Teo, W.Z.; Sofer, Z.; Fisher, A.C.; Pumera, M., The Cytotoxicity of Layered Black Phosphorus. Chemistry - A European Journal 2015, 21 (40), 13991-13995.
  • Mazánek, V.; Jankovský, O.; Luxa, J.; Sedmidubský, D.; Janoušek, Z.; Šembera, F.; Mikulics, M.; Sofer, Z., Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale 2015, 7, 13646-13655.
  • Latiff, N.B.M.; Sofer, Z.; Huber, Š.; Pumera, M., Toxicity of Layered Semiconductor Chalcogenides: Beware of Interferences. RSC Advances 2015, 5, 67485-67492.
  • Nasir, M.Z.M.; Sofer, Z.; Pumera, M., Effect of Electrolyte pH on the Inherent Electrochemistry of Layered Transition-Metal Dichalcogenides (MoS2, MoSe2, WS2, WSe2). ChemElectroChem 2015, 2 (11), 1713-1718.
  • Šimek, P.; Sedmidubský, D.; Huber, Š.; Klímová, K.; Maryško, M.; Mikulics, M.; Sofer, Z., Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia. Materials Chemistry and Physics 2015, 164, 108-114.
  • Jankovský, O.; Sedmidubský, D.; Šimek, P.; Klímová, K.; Bouša, D.; Boothroyd, C.; Macková, A.; Sofer, Z., Separation of thorium ions from wolframite and scandium concentrates using graphene oxide. Physical Chemsitry Chemical Physics 201517, 25272-25277.
  • Toh, R.J.; Sofer, Z.; Pumera, M., ansition Metal Oxides for Oxygen Reduction Reaction: Influence of Oxidation States of Metal and its Position on the Periodic Table. ChemPhysChem 2015, 16 (16), 3527-3531.
  • Eng, A.Y.S.; Sofer, Z.; Huber, Š.; Bouša, D.; Maryško, M.; Pumera, M., Hydrogenated Graphenes by the Birch Reduction: Influence of Electron and Proton Sources on the Hydrogenation Efficiency, Magnetism and Electrochemistry. Chemistry - A European Journal 2015, 21 (47), 16828-16838.
  • Bouša, D.; Jankovský, O.; Sedmidubský, D.; Šturala, J.; Pumera, M.; Sofer, Z., Mesomeric effect of diazonium salts modified graphene: substituent type and position influences its properties. Chemistry - A European Journal 2015, 21 (49), 17728-17738.
  • Mayorga-Martinez, C.C.; Sofer, Z.; Pumera, M., Layered Black Phosphorus as a Selective Gas Sensor. Angewandte Chemie International Edition 2015, 54, 14317-14320.
  • Gusmao, R.; Sofer, Z.; Šembera, F.; Janoušek, Z.; Pumera, M., Electrochemical fluorgraphane: hybrid electrocatalysis of biomarkers, hydrogen evolution and oxygen reduction. Chemistry - A European Journal 2015, 21 (46), 16474-16478.
  • Ambrosi, A.; Sofer, Z.; Pumera, M., Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2Small 2015, 11 (5), 605-612.
  • Jankovský, O.; Sedmidubský, D.; Šimek, P.; Sofer, Z.; Ulbrich, P.; Bartůněk, V., Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceramics International 2015, 41 (1), 595-601.
  • Nádherný, L.; Jankovský, O.; Sofer, Z.; Leitner, J.; Martin, C.; Sedmidubský, D., Phase equilibria in the Zn–Mn–O system. Journal of the European Ceramic Society 2015, 35 (2), 555-560.
  • Jankovský, O.; Sedmidubský, D.; Šimek, P.; Sofer, Z., Phase Diagram of the Sr-Co-O System. Journal of the European Ceramic Society 2015, 35 (3), 935-840.
  • Šimek, P.; Sedmidubský, D.; Klímová, K.; Mikulics, M.; Maryško, M.; Veselý, M.; Jurek, K.; Sofer, Z., GaN:Co epitaxial layers grown by MOVPE. Journal of Crystal Growth 2015, 414, 62-68.
  • Loo, A.H.; Bonanni, A.; Sofer, Z.; Pumera, M., Exfoliated Transition Metal Dichalcogenides (MoS2, MoSe2, WS2, WSe2): An Electrochemical Impedance Spectroscopic Investigation.  Electrochemistry Communications 2015, 50, 39-42.
  • Šimek, P.; Klímová, K.; Sedmidubský, D.; Jankovský, O.; Pumera, M.; Sofer, Z., Towards graphene iodide: Iodination of graphite oxide. Nanoscale 2015, 7 (1), 261-270.
  • Honetschlägerová, L.; Janouškovcová, P.; Kubal, M.; Sofer, Z., Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass. Environmental Technology 2015, 36 (3), 358-365.
  • Chua, C.K.; Sofer, Z.; Lim, C.S.; Pumera, M., Inherent electrochemistry of layered post-transition metal halides: The unexpected effect of potential cycling of PbI2. Chemistry - A European Journal 2015, 21 (7), 3073-3078.
  • Wang, L.; Sofer, Z.; Pumera, M., Voltammetry of Layered Black Phosphorus. ChemElectroChem 2015, 2 (3), 324-327.
  • Maryško, M.; Hejtmánek, J.; Laguta, V.; Sofer, Z.; Sedmidubský, D.; Šimek, P.; Veselý, M.; Mikulics, M.; Buchal, C.; Macková, A.; Malinský, P.; Wilhelm, R. A., Ferromagnetic and paramagnetic magnetization of implanted GaN: Ho, Tb, Sm, Tm films. Journal of Applied Physics 2015, 117, 178907.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z.; Bartůněk, V., Simple synthesis of Cr2O3 nanoparticles with a tunable particle size. Ceramics International 2015, 41 (3) (B), 4644-4650.
  • Chua, C.K.; Sofer, Z.; Lim, C.S.; Jankovský, O.; Pumera, M., Misfit-layered Bi1.85Sr2Co1.85O7.7-δ for hydrogen evolution reaction: Beyond van der Waals heterostructures. ChemPhysChem 2015, 16 (4), 769-774.

2014

  • Sofer, Z.; Šimek, P.; Jankovský, O.; Sedmidubský, D.; Beran, P.; Pumera, M., Neutron Diffraction as a Precise and Reliable Method for Obtaining Structural Properties of Bulk Quantities of Graphene. Nanoscale 2014, 6 (21), 13082-13089.
  • Poh, H.L.; Sofer, Z.; Luxa, J.; Pumera, M., Transition Metal-Free Graphenes for Electrochemical Applications via Reduction of CO2 by Lithium. Small 2014, 10 (8), 1443-1450.
  • Teo, W.Z.; Chng, E.L.K.; Sofer, Z.; Pumera, M., Cytotoxicity of halogenated graphenes. Nanoscale 2014, 6, 1173-1180.
  • Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, S.; Janoušek, Z.; Šembera, F.; Pumera, M.; Sofer, Z., Water-soluble highly fluorinated graphite oxide. RSC Advances 2014, 4, 1378-1387.
  • Sofer, Z.; Jankovský, O.; Šimek, P.; Soferová, L.; Sedmidubský, D.; Pumera, M., Highly Hydrogenated Graphene via Active Hydrogen Reduction of Graphene Oxide Reduction in Aqueous Phase at Room Temperature. Nanoscale 2014, 6, 2153-2160.
  • Jankovský, O.; Šimek, P.; Sedmidubský, D.; Huber, Š.; Pumera, M.; Sofer, Z., Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3/graphene. RSC Advances 2014, 4, 7418-7424.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z.; Rubešová, K.; Růžička, K.; Svoboda, P., Oxygen non-stoichiometry and thermodynamic properties of Bi2Sr2CoO6+δδ.  Journal of the European Ceramic Society 2014, 34 (5), 1219-1225.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z.; Leitner, J.; Růžička, K.; Svoboda, P., Heat capacity, enthalpy and entropy of Sr14Co11O33 and Sr6Co5O15Thermochimica Acta 2014, 575, 167-172.
  • Poh, H.L.; Sofer, Z.; Nováček, M.; Pumera, M., Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Chemistry - A European Journal 2014, 20 (14), 4284-4291.
  • Mackova, A.; Malinský, P.; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Mikulics, M.; Wilhelm, R. A., A Study of the Structural and Magnetic Properties of ZnO Implanted by Gd Ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014, 332, 80-84.
  • Ambrosi, A.; Poh, H.L.; Wang, L.; Sofer, Z.; Pumera, M., Capacitance of p- and n- doped graphenes is dominated by structural defects regardless the dopant type. ChemSusChem 2014, 7 (4), 1102-1106.
  • Chng, L.K.E.; Sofer, Z.; Pumera, M., Cytotoxicity Profile of Highly Hydrogenated Graphene. Chemistry - A European Journal 2014, 20, 6366-6373.
  • Wang, L.; Sofer, Z.; Luxa, J.; Pumera, M., Nitrogen Doped Graphene: Influence of Precursors and Conditions of the Synthesis. Journal of Materials Chemistry C 2014, 2, 2887-2893.
  • Jankovský, O.; Sedmidubský, D.; Rubešová, K.; Sofer, Z.; Leitner, J.; Ružička, K.; Svoboda, P., Structure, oxygen non-stoichiometry and thermal properties of Bi1.85Sr2Co1.85O7.7-δ ceramics. Thermochimica Acta 2014, 582C, 40-45.
  • Ambrosi, A.; Sofer, Z.; Pumera, M., Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A 2014, 2, 8981-8987.
  • Mikulics, M.; Hardtdegen, H.; Adam, R.; Grützmacher, D.; Gregušová, D.; Novák, J.; Kordoš, P.; Sofer, Z.; Serafini, J.; Zhang, J.; Sobolewski, R.; Marso, M., Impact of thermal annealing on nonequilibrium carrier dynamics in single-crystal, freestanding GaAs mesostructures. Semiconductor Science and Technology 2014, 29, 045022-6.
  • Šimek, P.; Sofer, Z.; Jankovský, O.; Sedmidubský, D.; Pumera, M., Oxygen-Free Highly Conductive Graphene Papers. Advanced Functional Materials 2014, 24 (31), 4878-4885.
  • Bartůňek, V.; Huber, Š.; Sedmidubský, D.; Sofer, Z.; Šimek, P.; Jankovský, O., CoO and Co3O4 nanoparticles with a tunable particle size. Ceramics International 2014, 40 (8), 12591-12595.
  • Jankovský, O.; Šimek, P.; Klímová, K.; Sedmidubský, D.; Matějková, S.; Pumera, M.; Sofer, Z., Towards graphene bromide: Bromination of graphite oxide. Nanoscale 2014, 6 (11), 6065-6074.
  • Macková, A.; Malinský, P.; Pupíková, H.; Nekvindová, P.; Cajzl, J.; Sofer, Z.; Wilhelm, R.A.; Kolitsch, A.; Oswald, J., The structural changes and optical properties of LiNbO3 after Er implantation using high ion fluencies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014, 332, 74-79.
  • Poh, H.L.; Sofer, Z.; Klímová, K.; Pumera, M., Fluorographenes via Thermal Exfoliation of Graphite Oxide in SF6, SF4 and MoF6 atmospheres. Journal of Materials Chemistry C 2014, 2 (26), 5198-5207.
  • Sofer, Z.; Wang, L.; Klímová, K.; Pumera, M., Highly Selective Uptake of Ba2+ and Sr2+ Ions by Graphene Oxide from Mixtures of IIA Elements. RSC Advances 2014, 4, 26673-26676.
  • Lim, C.S.; Ambrosi, A.; Sofer, Z.; Pumera, M., Magnetic Control of Electrochemical Processes at Electrode Surface using Iron-rich Graphene Materials with Dual Functionality. Nanoscale 2014, 6, 7391-7396.
  • Teo, W.Z.; Chng, E.L.K.; Sofer, Z.; Pumera, M., Cytotoxicity of Exfoliated Transition Metal Dichalcogenides (MoS2, WS2 and WSe2) is lower than that of Graphene and Its Analogues. Chemistry A European Journal 2014, 20 (31), 9627-9632.
  • Wong, C.H.A.; Jankovský, O.; Sofer, Z.; Pumera, M., Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 2014, 77, 508-517.
  • Lim, C.S., Chua, C.K.; Sofer, Z.; Jankovský, O.; Pumera, M., Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca3Co4O9 as a New Class of Chalcogenide Materials for Hydrogen Evolution. Chemistry of Materials 2014, 26 (14), 7130-4136.
  • Sofer, Z.; Jankovský, O.; Simek, P.; Klímová, K.; Mackova, A.; Pumera, M., Uranium and Thorium Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano 2014, 8 (7), 7106-7114.
  • Wang, L.; Sofer, Z.; Ambrosi, A.; Šimek, P.; Pumera, M., 3D-graphene for electrocatalysis of oxygen reduction reaction: Increasing number of layers increases the catalytic effect. Electrochemistry Communications 2014, 46, 148-161.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z.; Šimek, P., Towards Highly Efficient Thermoelectrics: Ca3Co4O9+δ·n CaZrO3 Composite. Ceramics-Silikáty 2014, 58 (2), 106-110.
  • Jankovský, O.; Huber, Š.; Sedmidubský, D.; Šimek, P.; Sofer, Z., Synthesis, magnetic and transport properties of oxygen-free CrN ceramics. Journal of the European Ceramic Society 2014, 34 (16), 4131-4136.
  • Chua, C. K.; Ambrosi, A.; Sofer, Z.; Macková, A.; Havránek, V.; Tomandl, I.; Pumera, M., Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals. Chemistry - A European Journal 2014, 20 (48), 15760-15767.
  • Chia, X.; Ambrosi, A.; Sofer, Z.; Sedmidubský, D.; Pumera, M., Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS2 materials via Electrochemical Methods. Chemistry - A European Journal 2014, 30, 17426-17432.
  • Elaine, C.; Sofer, Z.; Pumera, M., MoS2 Exhibits Stronger Toxicity with Increased Exfoliation. Nanoscale 2014, 6 (23), 14412-14418.
  • Zarevucka, M.; Hermanová, S.; Sofer. Z.; Voberková, S.; Brabcová, J., Novel transesterification biocatalysts based on lipases immobilized on graphene oxide. Journal of Biotechnology 2014, 156, 563.
  • Mikulics, M.; Hardtdegen, H.; Arango, Y.C.; Adam, R.; Fox, A.; Grützmacher, D.; Gregusova, D.; Stancek, S.; Novak, J.; Kordos, P.; Sofer, Z.; Juul, L.; Marso, M., Reduction of skin effect losses in double-level-T-gate structure. Applied Physics Letters 2014, 105, 232102-3.
  • Eng, A.Y.S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M., Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano 2014, 8 (12), 12185-12198.
  • Jankovský, O.; Sofer, Z.; Sedmidubský, D., Structure, oxygen non-stoichiometry and thermal properties of (Bi0.4Sr0.6)Sr2CoO5-δThermochimica Acta 2014, 582, 40-46.
  • Šimek, P.; Sedmidubský, D.; Klímová, K.; Huber, Š.; Brázda, P.; Mikulics, M.; Jankovský, O.; Sofer, Z., Journal of Nanoparticle Research 2014, 16, 2805.
  • Wong, C.H.A.; Sofer, Z.; Kubešová, M.; Kučera, J.; Matějková, S.; Pumera, M., Inadvertent contamination of graphene materials: Synthetic routes introduce a whole spectrum of unanticipated metallic elements. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 2014, 111 (38), 13774-13779.
  • Jankovský, O.; Hrdličková Kučková, Š.; Pumera, M.; Šimek, P.; Sedmidubský, D.; Sofer, Z., Carbon Fragments are Ripped off from Graphite oxide Sheets During its Thermal Reduction. Carbon Fragments are Ripped off from Graphite oxide Sheets During its Thermal Reduction. Chemistry - A European Journal 2014, 20 (46), 14946-14950.
  • Seah, T.H.; Poh, H.L.; Chua, C.K.; Sofer, Z.; Pumera, M., Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene. Electroanalysis 2014, 26, 62-68.

 

2013

  • Ambrosi, A.; Bonanni, A.; Sofer, Z.; Pumera, M., Large-scale quantification of CVD graphene surface coverage. Nanoscale 2013, 5, 2379-2387.
  • Sofer, Z.; Sedmidubský, D.; Huber, Š.; Šimek, P.; Šaněk, F.; Jankovský, O.; Gregorová, E.; Fiala, R.; Matějková, S.; Mikulics, M., Rapid thermal synthesis of GaN nanocrystals and nanodiscs. Journal of Nanoparticle Research 2013, 15 (1), 1411.
  • Poh, H.L.; Šimek, P.; Sofer, Z.; Pumera, M., Halogenations of Graphene with Chlorine, Bromine or Iodine via Exfoliation in Halogen Atmosphere. Chemistry - A European Journal 2013, 19, 2655-2662.
  • Tan, S.M.; Sofer, Z.; Pumera, M., Biomarkers Detection on Hydrogenated Graphene Surfaces: Towards applications of Graphane in Biosensing. Electroanalysis 2013, 25, 703-705.
  • Jun, T.R.; Ling, P.H.; Sofer, Z.; Pumera, M., Transition metal (Mn, Fe, Co, Ni) doped graphene hybrids for electrocatalysis. Chemistry - An Asian Journal 2013, 8, 1285-1300.
  • Bartůněk, V.; Rak, J.; Sofer, Z.; Král, V., Nano-crystals of various lanthanide fluorides prepared using the ionic liquid bmim PF6Journal of Fluorine Chemistry 2013, 149, 13-17.
  • Chng, E.L.; Poh, H.L.; Sofer, Z.; Pumera, M., Purification of Carbon Nanotubes by High Temperature Chlorine Gas Treatment. Physical Chemistry Chemical Physics 2013, 15 (15), 5615-5619.
  • Poh, H.L.; Šimek, P.; Sofer, Z.; Pumera, M., Sulphur Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2 or CS2 Gas. ACS Nano 2013, 7 (6), 5262-5272.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z., Phase diagram of the pseudobinary system Bi-Co-O. Journal of the European Ceramic Society 2013, 23 (13-14), 2699-2704.
  • Eng, A.Y.S.; Poh, H.L.; Luxa, J.; Sofer, Z.; Pumera, M., Potassium assisted reduction and doping of graphene oxides: towards faster electron transfer kinetics. RSC Advances 2013, 3, 10900-10908.
  • Sofer, Z.; Šimek, P.; Pumera, M., Complex organic molecules are released during thermal reduction of graphite oxides. Physical Chemistry Chemical Physics 2013, 15, 9257-9264.
  • Eng, A.Y.S.; Poh, H.L.; Šaněk, F.; Maryško, M.; Matějková, S.; Sofer, Z.; Pumera, M., Searching for Magnetism in Hydrogenated Graphene: Using Highly Hydrogenated Graphene Prepared via Birch reduction of Graphite Oxides. ACS Nano 2013, 7 (7), 5930-5939.
  • Tan, S.M.; Poh, H.L.; Sofer, Z.; Pumera, M., Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. Analyst 2013, 138, 4885-4891.
  • Eng, A.Y.S.; Ambrosi, A.; Chua, C.K.; Šaněk, F.; Sofer, Z.; Pumera, M., Unusual Inherent Electrochemistry of Graphene Oxides Prepared Using Permanganate Oxidants. Chemistry A European Journal 2013, 19 (38), 12673-12683.
  • Bartůněk, V.; Rak, J.; Sofer, Z.; Král, V., Preparation and Luminescent Properties of Cubic Potassium-Erbium Fluoride Nanoparticles. Journal of Fluorine Chemistry 2013, 156, 363-366.
  • Ambrosi, A.; Wong, G.K.S.; Webster, R.D.; Sofer, Z.; Pumera, M., Carcinogenic organic residual compounds re-adsorbed on thermally reduced graphene materials are released at low temperature. Chemistry A European Journal 2013, 19, 14446-14450.
  • Jankovský, O.; Sedmidubský, D.; Sofer, Z.; Čapek, J.; Růžička, K., Thermal Properties and Homogenity Range of Bi24+xCo2-xO39Ceramics – Silikáty 2013, 57 (2), 83-86.
  • Huber, Š.; Sofer, Z.; Nádherný, L.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Maryško, M., Synthesis and Magnetic Properties of Zn Spinel Ceramics. Ceramics – Silikáty 2013, 57 (2), 162-166.
  • Eng, A.Y.S.; Sofer, Z.; Šimek, P.; Kosina, J.; Pumera, M., Highly Hydrogenated Graphene via Microwave Exfoliation of Graphite Oxide in Hydrogen Plasma: Towards Electrochemical Applications.  Chemistry - A European Journal 2013, 19 (46), 15583-15592.
  • Poh, H.L.; Šimek, P.; Sofer, Z.; Tomandl, I.; Pumera, M., Boron and Nitrogen doping of Graphene via Thermal Exfoliation of Graphite Oxide in BF3 or NH3 atmospheres: Contrasting Properties. Journal of Materials Chemistry A 2013, 1, 13146-13153.
  • Wang, L.; Sofer, Z.; Simek, P.; Tomandl, I.; Pumera, M., Boron Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping. Journal of Physical Chemistry C 2013, 117 (44), 23251-23257.
  • Palková, H.; Sovová, T.; Koníčková, I.; Kočí, V.; Bartůněk, V.; Sofer, Z., Aplikace Niklu a Nanoniklu do Terestrického Prostředí. Chemické Listy 2013, 107, 885-891.
  • Mackova, A.; Malinský, P.; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Mikulics, M., A Study of the Structural properties of GaN implanted by various rare-earth. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013, 307, 446-451.

 

2012

  • Ambrosi, A.; Chua, C. K.; Khezri, B.; Sofer, Z.; Webster, R. D.; Pumera, M., Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proceedings of the National Academy of Sciences 2012, 109 (32), 12899-12904
  • Chua, C. K.; Sofer, Z.; Pumera, M., Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chemistry – A European Journal 2012, 18 (42), 13453-13459.
  • Ambrosi, A.; Chee, S. Y.; Khezri, B.; Webster, R. D.; Sofer, Z.; Pumera, M., Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angewandte Chemie International Edition 2012, 51 (2), 500-503.
  • Giovanni, M.; Poh, H. L.; Ambrosi, A.; Zhao, G.; Sofer, Z.; Šaněk, F.; Khezri, B.; Webster, R. D.; Pumera, M., Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale 2012, 4 (16), 5002-5008.
  • Poh, H. L.; Šaněk, F.; Ambrosi, A.; Zhao, G.; Sofer, Z.; Pumera, M., Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 2012, 4 (11), 3515-3522.
  • Mikulics, M.; Hardtdegen, H.; Winden, A.; Fox, A.; Marso, M.; Sofer, Z.; Lüth, H.; Grützmacher, D.; Kordoš, P., Residual strain in recessed AlGaN/GaN heterostructure field-effect transistors evaluated by micro photoluminescence measurements. physica status solidi (c) 2012, 9 (3-4), 911-914.
  • Buglione, L.; Chng, E.L.K.; Ambrosi, A.; Sofer, Z.; Pumera, M., Graphene Materials Preparation Methods have Dramatic Influence upon their Capacitance. Electrochemistry Communication 2012, 14, 5-8.
  • Sofer, Z.; Sedmidubský, D.; Huber, Š.; Hejtmánek, J.; Macková, A., Mn doped GaN thin films and nanoparticles. International Journal of Nanotechnology 2012, 9 (8/9), 809-824.
  • Jankovsky, O.; Sedmidubsky, D.; Sofer, Z.; Simek, P.; Hejtmanek, J., Thermodynamic Behavior of Ca3Co3.93+xO9+δ Ceramics. Ceramics - Silikáty 2012, 56 (2), 139-144.
  • Nádherný, L.; Sofer, Z.; Sedmidubský, D.; Jankovský, O.; Mikulics, M., ZnO thin films prepared by spray-pyrolysis technique from organo-metallic precursor. Ceramics 2012, 56 (2), 117-121.
  • Šimek, P.; Sofer, Z.; Sedmidubský, D.; Jankovský, O.; Hejtmánek, J.; Maryško, M.; Václavů, M.; Mikulics, M., Mn doping of GaN layers grown by MOVPE.  Ceramics – Siikáty 2012, 56 (2), 122-126.
  • Sedmidubský, D.; Jakes, V.; Jankovsky, O.; Leitner, J.; Sofer, Z.; Hejtmanek, J., Phase Equilibria in Ca-Co-O System. Journal of Solid State Chemistry 2012, 194, 199-205.
  • Chua, C.K.; Sofer, Z.; Pumera, M., Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties. Chemistry - An Asian Journal 2012, 7 (10), 2367-2372.
  • Mikulics, M.; Hardtdegen, H.; Gregušová, D.; Sofer, Z.; Šimek, P.; Trellenkamp, S.; Grützmacher, D.; Lüth, H.; Kordoš, P.; Marso, M., Non-uniform distribution of induced strain in gate recessed AlGaN/GaN structure evaluated by micro PL measurements. Semiconductor Science and Technology 2012, 27 (10), 105008.
  • Chee, S.Y.; Poh, H.L.; Chua, C.K.; Šaněk, F.; Sofer, Z.; Pumera, M., Influence of Parent Graphite Size on the Electrochemistry of Thermally Reduced Graphene Oxide. Physical Chemistry Chemical Physics 2012, 14, 12794-12799.
  • Poh, H.L.; Šaněk, F.; Sofer, Z.; Pumera, M., High-Pressure Hydrogenation of Graphene: Towards Graphane. Nanoscale 2012, 4, 7006-7011.
  • Bonanni, A.; Chua, C.K.; Zhao, G.; Sofer, Z.; Pumera, M., Inherently Electroactive Graphene Oxide Nanoplates as Labels for Single Nucleotide Polymorphism Detection. ACS Nano 2012, 6 (10), 8546-8551.
  • Poh, H.L.; Sofer, Z.; Pumera, M., Graphane electrochemistry: Electron transfer at hydrogenated graphenes. Electrochemistry Communications 2012, 25, 58-61.
  • Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J., Porous alumina and zirconia ceramics with tailored thermal conductivity. Journal of Physics: Conference Series 2012, 395, 012022.

 

2011

  • Ambrosi, A.; Bonanni, A.; Sofer, Z.; Cross, J. S.; Pumera, M., Electrochemistry at chemically modified graphenes. Chemistry – A European Journal 2011, 17 (38), 10763-10770.
  • Fiala, R.; Khalakhan, I.; Matolínová, I.; Václavu, M.; Vorokhta, M.; Sofer, Z.; Huber, S.; Potin, V.; Matolín, V., Pt-CeO2 Coating of Carbon Nanotubes Grown on Anode Gas Diffusion Layer of the Polymer Electrolyte Membrane Fuel Cell. Journal of Nanoscience and Nanotechnology 2011, 11 (6), 5062-5067.
  • Sofer, Z.; Sedmidubský, D.; Moram, M.; Macková, A.; Maryško, M.; Hejtmánek, J.; Buchal, C.; Hardtdegen, H.; Václavů, M.; Peřina, V.; Groetzschel, R.; Mikulics, M., Magnetism in GaN layers implanted by La, Gd, Dy and Lu. Thin Solid Films 2011, 519 (18), 6120-6125.
  • Sofer, Z.; Sedmidubský, D.; Huber, Š.; Hejtmánek, J.; Macková, A., Mn doped GaN thin films and nanoparticles. International Journal of Nanotechnology 2012, 9 (8/9), 809-824.
  • Goh, M.S.; Bonanni, A.; Sofer, Z.; Pumera, M., Chemically Modified Graphenes for Oxidation of DNA bases: Analytical Parameters. Analyst 2011, 136, 4738-4744.
  • Leitner, J.; Jakes, V.; Sofer, Z.; Sedmidubsky, D.; Ruzicka, K.; Svoboda, P., Heat capacity, enthalpy and entropy of ternary bismuth-tantalum oxides. Journal of Solid State Chemistry 2011, 184 (2), 241-245.
  • Sofer, Z.; Sedmidubský, D.; Huber, Š.; Maryško, M.; Hejtmánek, J.; Jurek, K.; Mikulics, M., Flux growth of ZnO crystals doped by transition metals. Journal of Crystal Growth 2011, 314 (1), 123-128.
  • Matolínová, I.; Fiala, R.; Khalakhan, I.; Vorokhta, M.; Sofer, Z.; Yoshikawa, H.; Kobayashi, K.; Matolín, V., Synchrotron Radiation Photoelectron Spectroscopy Study of Metal-Oxide Thin Film Catalysts: Pt-CeO2 coated CNTs. Applied Surface Science 2012, 258, 2161-2164.
  • Cichoň, S.; Macháč, P.; Barda, B.; Sofer, Z., Influence of different SiC surface treatments performed prior to Ni ohmic contacts formation. Microelectronic Engineering 2011, 88 (5), 553-556.

 

2010

  • Matolin, V.; Matolinová, I.; Václavů, M.; Khalakhan, I.; Vorokha, M.; Fiala, R.; Piš, I.; Sofer, Z.; Poltierová-Vejpravová, J.; Mori, T.; Potin, V.; Yoshikawa, H.; Ueda, S.; Kobayashi, K., Platinum-Doped CeO2 Thin Film Catalysts Prepared by Magnetron Sputtering. Langmuir 2010, 26 (15), 12824-12831.
  • Gregušová, D.; Gaži, Š.; Sofer, Z.; Stoklas, R.; Dobročka, E.; Mikulics, M.; Greguš, J.; Novák, J.; Kordoš, P., Oxidized Al Film as an Insulation Layer in AlGaN/GaN Metal–Oxide–Semiconductor Heterostructure Field Effect Transistors. Japanese Journal of Applied Physics 2010, 49, 046504.
  • Mikulics, M.; Adam, R.; Sofer, Z.; Hardtdegen, H.; Stanček, S.; Knobbe, J.; Kočan, M.; Stejskal, J.; Sedmidubský, D.; Pavlovič, M.; Nečas, V.; Grützmacher, D.; Marso, M., Femtosecond and highly sensitive GaAs metal–semiconductor–metal photodetectors grown on aluminum mirrors/pseudo-substrates. Semiconductor Science and Technology 2010, 25 (7), 075001.

 

2009

  • Sedmidubský, D.; Leitner, J.; Svoboda, P.; Sofer, Z.; Macháček, J., Heat capacity and Phonon spectra of AIIIN - Experiment and Calculation. Journal of Thermal Analysis and Calorimetry 2009, 95, 403-407.
  • Sofer, Z.; Sedmidubský, D.; Stejskal, J.; Hejtmánek, J.; Maryško, M.; Jurek, K.; Havránek, V.; Macková, A.; Hardtdegen, H.; Václavů, M., In-situ Doping and Implantation of GaN layers with Mn. physica status solidi (c) 2009, 6 (S2) 646-649.

2008

  • Sedmidubský, D.; Leitner, J.; Sofer, Z., Phase relations in the Ga–Mn–N system. Journal of Alloys and Compounds 2008, 452 (1) 105-109.
  • Hejtmánek, J.; Knížek, K.; Maryško, M.; Jirák, Z.; Sedmidubský, D.; Sofer, Z.; Peřina, V.; Hardtdegen, H.; Buchal, C., On the magnetic properties of Gd implanted GaN. Journal of Applied Physics 2008, 103, 07D107.
  • Sofer, Z.; Sedmidubský, D.; Stejskal, J.; Hejtmánek, J.; Maryško, M.; Jurek, K.; Václavů, M.; Havránek, V.; Macková, A., Journal of Crystal Growth 2008, 310 (23), 5025-5027.

 

2007

  • Sofer, Z.; Kaluza, N.; Hardtdegen, H.; Steins, R.; Cho, Y.S.; Stejskal, J.; Sedmidubský, D., Investigation of AlN growth on sapphire substrates in a horizontal MOVPE reactor. Journal of Physics and Chemistry of Solids 2007, 68 (5-6), 1131–1134.
  • Sofer, Z.; Třešňáková, P.; Špirková, J.; Rubáš, S.; Kalábová, M., Synthesis of Er-complexes for photonic applications. Journal of Physics and Chemistry of Solids 2007, 68 (5-6) 1272–1275.
  • Tresnakova, P.; Spirkova, J.; Rubas, S.; Sofer, Z.; Oswald, J., Porous glass doping by Er3+ for photonics applications. Journal of Materials Science - Materials in Electronics 2007, 18, 379-382.

 

2006

  • Hardtdegen, H.; Kaluza, N.; Steins, R.; Cho, Y.S.; Schmidt, R.; Sofer, Z.; Zettler, J.-T., Observation of growth during the MOVPE of III-nitrides. Journal de Physique IV 2006, 132, 177-183.
  • Hardtdegen, H.; Kaluza, N.; Sofer, Z.; Cho, Y. S.; Steins, R.; Bay, H. L.; Dikme, Y.; Kalisch, H.; Jansen, R. H.; Heuken, M.; Strittmatter, A.; Reißmann, L.; Bimberg, D.; Zettler, J.-T., New method for the in situ determination of Alx Ga1-x N composition in MOVPE by real-time optical reflectance. physica status solidi (a) 2006, 203 (7), 1645-1649.
  • Cho, Y. S.; Hardtdegen, H.; Kaluza, N.; Thillosen, N.; Steins, R.; Sofer, Z.; Lüth, H., Effect of carrier gas on GaN epilayer characteristics. physica status solidi (c) 2006, 3 (6), 1408-1411.

 

2005

  • Leitner, J.; Stejskal, J.; Sofer, Z., Thermodynamic aspects of carbon incorporation into AlN epitaxial layers grown by MOVPE. physica status solidi (c) 2005, 2 (7) 2504-2507.
  • Mikulics, M.; Kočan, M.; Rizzi, A.; Javorka, P.; Sofer, Z.; Stejskal, J.; Marso, M.; Kordoš, P.; Lüth, H., Growth and properties of GaN and AlN layers on silver substrates. Applied Physics Letters 2005, 87, 212109.
  • Hardtdegen, H.; Kaluza, N.; Steins, R.; Cho, Y.S.; Sofer, Z.; Zorn, M.; Haberland, K.; Zettler, J.T., Use of wafer temperature determination for the study of unintentional parameter influences for the MOVPE of III-nitrides. physica status solidi (b) 2005, 242 (13), 2581-2586.

 

2002

  • Leitner, J.; Stejskal, J.; Sofer, Z., Thermodynamics of Gas-Phase Parasitic Reactions in AlGaN MOVPE Growth. physica status solidi (c) 2002, 0 (1), 133-136.
[urlnadstranka] => [obrazek] => [pozadi] => [iduzel] => 42122 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/42122 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [42121] => stdClass Object ( [nazev] => Research Team [seo_title] => Research Team [seo_desc] => [autor] => [autor_email] => [obsah] =>

prof.Sofer (výška 215px)

 

 

Group Leader

prof. Ing. Zdeněk Sofer, Ph.D

Assistant professors

 

Postdocs

 

Postgraduate Students

 

Graduate Students

  • Bc. Petr Hykyš
  • Dominik Chmelař
  • Darya Ivanova
  • Bc. Boris Lochman
  • Phuong Thao Ngoová
  • Ha An Nguyenová
  • Bc. Jan Paštika
  • Bc. Laura Pavlíková
  • Bc. Lucie Spejchalová

 

Visiting Students

  • Aljoscha Soell (2019)
  • Tim Pascal Schlachta (2019)
  • Joachim Haemers (2019)

 

Technical Support

  • Lýdie Soferová

 

Cooperation within UCT Prague

 

National Cooperation

 

International Cooperation

[urlnadstranka] => [obrazek] => [pozadi] => [iduzel] => 42121 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/42121 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [42119] => stdClass Object ( [obsah] => [iduzel] => 42119 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) [42115] => stdClass Object ( [nazev] => SoferGroup World [seo_title] => Let's have a look at our work [seo_desc] => Let's have a look at our work [autor] => [autor_email] => [obsah] => [iduzel] => 42115 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors/42115 [sablona] => stdClass Object ( [class] => stranka_galerie_velka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 29149 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/nanomaterials-and-semiconductors [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [28557] => stdClass Object ( [nazev] => Transition Metal Oxide Materials [seo_title] => Transition Metal Oxide Materials – homepage [seo_desc] => [autor] => [autor_email] => [obsah] =>

Mixed transition metal oxides form a wide group of inorganic materials, which due to their specific properties given by the electron configuration and the character of the valence electrons, find extensive use as materials for electronics, energy applications, chemical catalysis etc.

Group Profile

In our laboratory, we study technology of preparation of mixed oxides of transition metals (TM and RE) and their properties. Our attention is focused, in particular, on high-temperature superconductors, layered cobalt oxides for high temperature thermoelectric conversion, manganite perovskites with giant magnetoresistance, ZnO doped with magnetic impurities, niobates and tantalates for ferroelectric memories and optoelectronics or lanthanides-doped oxides for use in LEDs or scintillation technologies. Our aim is to find relationships between chemical composition, structure and the resulting properties of these materials.

 Our research is supported by grants from the Technology Agency of the Czech Republic, the Czech Academy of Sciences, and RVO Ministry of Education Youth and Sports of the Czech Republic funds.

Research Team

Group Head

assoc. prof. Ing. Kateřina Rubešová, Ph.D.

Research Team

Ing. Vít Jakeš, Ph.D.
Ing. Tomáš Thoř
Ing. Vilém Bartůněk, Ph.D.
Ing. Ladislav Nádherný, Ph.D.

Collaboration with:

prof. Dr. Ing. David Sedmidubský
prof. Ing. Miloš Nevřiva, DrSc.
prof. Ing. Jindřich Leitner, DrSc.
Ing. Ondřej Jankovský, Ph.D.
Ing. Tomáš Hlásek, Ph.D.

Ph.D. students

Ing. Václav Doležal
Ing. Tomáš Thoř
Ing. Jan Havlíček
Ing. Kateřina Zloužeová

Bc. and MSc. students

Bc. Tomáš Chvojka
Bc. Herbert Kindl
Bc. Vojtěch Ševčík
Bc.Karin Paurová
Matyáš Jandík
Stela Kašperanová
Jiří Prikner

Technician

Jakub Brož

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [40225] => stdClass Object ( [nazev] => Equipment [seo_title] => Equipment [seo_desc] => [autor] => [autor_email] => [perex] =>

Our laboratory is equipped with devices for the preparation of bulk materials and coatings and instrumentation for a basic characterization of polycrystalline materials – phase analysis and optical properties. Other ways of characterization can be performed within the Department of Inorganic Chemistry (Instrumentation of the Department) or in cooperation with other institutions.

  • Spin-coater, dip-coater
  • Vacuum furnace up to 1700 °C and 107 Pa
  • High-temperature furnace for the synthesis of solids
  • High-temperature furnaces for the synthesis of solids with a controlled atmosphere
  • Glove box
  • X-ray diffractometer for polycrystalline materials
  • X-ray fluorescence WD spectrometer
  • Fiber spectrometer for the UV-Vis range
[ikona] => banka [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Spin coater

Our laboratory is equipped with a spin-coater type WS-650SZ-6NPP / LITE from Laurell Technologies Corporation.

Technical parameters

Atmosphere Nitrogen (vacuum system for substrate attachment)
Ramp / rotation / stopping time 1 s – 99 h 59 min
Substrate rotation speed
1 – 8,000 rot. min–1
Acceleration / deceleration 2 – 10,000 rot. min–2

 ◳ spin-coating (jpg) → (výška 215px)The spin-coating method is used to deposit thin films of a thickness ranging from nanometers to micrometers onto flat substrates. The films are prepared from volatile solutions or suspensions. The method is widely used in both laboratory and industrial spheres. The principle is to apply a small volume of solution to the center of a horizontally attached substrate and then to rotate it up to several thousand revolutions per minute. Centrifugal forces cause the solution to spread evenly over the entire surface of the substrate, with the excess of the solution flowing over its edge. When applied repeatedly, a thin film is produced.

By subsequent annealing, a crystalline film with desired properties can be prepared. The great advantages of this method are low technological difficulty, simplicity and reproducibility. 

Dip coater

Our laboratory has a dip-coater type RDC21-K from Bungard Elektronik GmbH. 

Technical parameters

Working atmosphere air
Maximum substrate weight 5 kg
Maximum lift height 580 mm
Handling speed 3 – 7,000 mm min–1 or 1.5 – 3,500 mm min–1
The speed of immersion / pulling 3 – 2,500 mm min–1 or 1.5 – 1,750 mm min–1
Dive / pull time 1 s – 99 h 59 min

 ◳ dip-coater (jpg) → (výška 215px)Dip-coating is a method that allows a thin layer to be prepared on both sides of a substrate at once. The principle of the method lies in the vertical immersion of the substrate into the solution for a certain period. Subsequently, the substrate is emerged with a defined velocity, with the excess solution flowing back into the vessel and evaporating the excess solvent. Repeating the wetting cycles of the solution results in a thicker  layer that remains on the substrate surface. Sometimes the wedge effect can be observed, which is an asymmetry in the thickness of the layer on the bottom and top of the substrate. The deposited layer is further heat-treated. The dip-coating method is characterized by its low financial demands and easy preparation of the layers.

High-temperature furnace for solid phase synthesis

  • Tube furnace for sintering in vacuum (up to 107 Pa) or in a chosen atmosphere, up to 1700 °C
  • Muffle furnaces for temperatures up to 1600 ° C (air) and tube furnaces for sintering in diferent atmospheres (up to 1200 °C)
 ◳ vakuova_pec (jpg) → (výška 215px)  ◳ komorova pec 1 (jpg) → (výška 215px)

 

X-ray diffractometer for polycrystalline materials

Bruker-Phaser 2nd Generation XRD for polycrystalline samples

  • Diffractometer with Co X-ray lamp ( λ [Co K-α1] = 1.789 · 10–1 nm)
    Cu lamps as an X-ray source are also available at the Department of Inorganic Chemistry.
 ◳ Bruker Phaser 2 (jpg) → (výška 215px)

 ◳ Bruker Phaser 2 inside1 (jpg) → (ořez 215*215px)

X-ray fluorescence WD spectrometer

SPECTROSCAN MAKV-GVM (Spectron)

Sequential wavelength dispersive X-ray fluorescence spectrometer for elemental analysis of powders, films, pelets, pearls and liquids in the range of Na-U.

  • Pd X-ray lamp with a max. power of 160 W
  • 4 analyzing crystals (LiF, graphite, PET, RbAP) in a Johanson geometry
  • Xe gaseous proportional counter detecting simultaneously in two orders of spectrum
  • sample changer with 10 slots

     ◳ XRF (png) → (výška 215px)
[urlnadstranka] => [iduzel] => 40225 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/oxide-materials/equipment [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [47226] => stdClass Object ( [nazev] => Student's work [seo_title] => Student's work [seo_desc] => [autor] => [autor_email] => [perex] =>

Offered topics of students theses

If you are interested in any of the topics presented below, do not hesitate to visit us in the A210c or A207 laboratory. You can contact us also by e-mail: rubesovk@vscht.cz

Ceramic precursors of hafnium mixed oxides used in single crystal growth by 

Optical Floating Zone

Hafnium oxides have a remarkably high material density and effective proton number; both properties are important for hard radiation capture. Unfortunately, these properties also mean high melting points, which means that single crystals can be prepared only by crucible-less methods. One such method is melting in optical furnace, for which the student will be preparing ceramic preforms. This work is a collaboration with the Institute of Physics of the Czech Academy of Sciences and IKZ Berlin.

 ◳ ofz (jpg) → (ořez 215*215px)

Preparation and study of new alkali-lead halide single crystals for scintillation and laser applications 

Halogen matrices, undoped or rare-earth-doped, will be grown by micro-pulling-down and vertical Bridgeman methods. These materials are currently studied for their suitable optical properties with a broad application potential, including scintillators, lasers, light convertors etc. This work is a collaboration with the Institute of Physics of the Czech Academy of Sciences.

 ◳ Dept27_VTFig4c (png) → (ořez 215*215px) 

Thin films of optically active perovskite-like phases for the construction of magneto-optical or electro-optical composites

The aim of this work is to optimize the growth of perovskite phases doped with rare earths and to synthesize heterogeneous structures, for instance with nano-diamond.

This work is a collaboration with the research group of assoc. prof. Nekvindová.

 ◳ thin film (jpg) → (originál)

Perovskite-like oxides synthesized by Spark Plasma Sintering

Cubic materials based on perovskites doped with d- and f-elements are promising luminescence materials due to their properties. This work focuses on preparation of oxides by means of SPS. Various methods of synthesis of precursor powders will be tested: co-precipitation, sol-gel, hydrothermal growth. This work is a collaboration with the Institute of Physics of the Czech Academy of Sciences.

 ◳ SPS_LA (jpg) → (ořez 215*215px)

Single-crystal growth of scintilation materials and their characterization

This work is focused on preparation of scintillators based on multicomponent garnets doped with Ce or Pr that will eventually be grown as single crystals by micro-pulling-down (mPD). The research will aim at incorporating ions that can affect the density of the material and also the band gap width and luminescent and scintillating properties. This work is a collaboration with the Institute of Physics of the Czech Academy of Sciences.

 ◳ mPD_krystal (png) → (šířka 215px)

Synthesis of Li-based mixed oxides applicable in neutrons detection

or

Multicomponent silicate or borate structures applicable in the detection of thermal neutrons

Both works will focus on the synthesis and testing of mixed oxides of lithium or boron that can be prepared as single crystals and used for the construction of thermal neutrons detector. Alternatively, these lithium- or boron-based materials can be prepared as dense ceramics by SPS. This work is a collaboration with the Institute of Physics of the Czech Academy of Sciences.

 ◳ borates (jpg) → (šířka 215px)

Ferrite ceramics (doped with lanthanides) sintered by SPS technology

The aim of this work is the synthesis and characterization of nanopowders based on the Fe-Co-X-O system. These precursors will be then sintered by the SPS technology. This work also comprises structure and magnetic analysis.

Spark plasma sintering - Wikipedia

Get more information from the supervisor

Layered (Ln,Ca)Mn2O7 manganites for magnetic application

The aim of this work is to develop a method for stabilization of the layered phase, measurement of its magnetics properties and their modification by magnetic dopants (lanthanides or transition elements). This work is an experimental research work for the field of magnetic cooling.

Get more information from the supervisor

Sol-gel preparation of transition metal oxides as pinning centers in YBaCuO superconductors

Ongoing Student Work

  • Sesquioxides doped with lanthanides for use in scintillation technology, Tomáš Thoř (PhD student)
  • Preparation and crystal growth of scintillating materials based on alkali halides and study of new doping concepts, Kateřina Křehlíková (PhD student)
  • Rare-earth perovskite structures as a suitable matrix for scintillation use, Jan Havlíček (PhD student)
  • Oxides doped with lanthanides for magneto-optical aplications, Václav Doležal, (PhD student)
  • Luminescent materials for multi-purpose applications: How to enhance the properties, Karin Paurová, (MSc student)
  •  Hydrothermal deposition of thin layers of perovskite phases, Herbert Kindl, (MSc student)
  •  Aluminates of alkali earth metals suitable for transparent ceramics synthesis, Vojtěch Ševčík, (MSc student)
  •  Sol-gel deposition of thin layers of perovskite phases for functional composites, Stela Kašperanová, (Bc student)
  •  Cerium-doped hafnium oxides and their recrystallization by means of OFZ, Jiří Prikner, (Bc student)
  •  Preparation of dense aluminate ceramics by means of SPS, Matyáš Jandík, (Bc student)

 

Defended students' works

Doctoral theses

  • Optically active thin layers preparation by sol-gel method, 2020, Dana Mikolášová (supervisor: Kateřina Rubešová, Ph.D.)
  • Optically active ytterbium garnets for waveguide applications, 2016, Tomáš Hlásek (supervisor: Kateřina Rubešová, Ph.D.)
  • Study of properties of superconducting materials, 2012, Vilém Bartůněk (supervisor: Olga Smrčková, CSc.)
  • Properties of Bi(Pb)-Sr-Ca-Cu-O Superconductors with Anionic Substitutions, 2010, Vít Jakeš (supervisor: Dagmar Sýkorová, CSc.)

    Diploma theses

  • Preparation of multi-component garnet-based structures for the detection of high-energy radiation, 2022, Bc. Fedor Levchenko (supervisor: Kateřina Rubešová, Ph.D.)
  • Nanostructured ferrites and manganites doped with lanthanides for magnetic applications, 2021, Bc. Lukáš Blažek (supervisor: Ladislav Nádherný, Ph.D.)
  • Preparation of oxide ceramics using SPS, 2019, Bc. Jan Havlíček (supervisor: Kateřina Rubešová, Ph.D.)
  • Hexagonal aluminates doped for detection of high-energy sources, 2018, Bc. Václav Doležal (supervisor: Ladislav Nádherný, Ph.D.)
  • Preparation of thin layers Er: YbAG by spin-coating method, 2016, Bc. Vojtěch Polák (supervisor: Vít Jakeš, Ph.D.)
  • Preparation of BaTiO3 ferroelectric for use in MRI diagnostics, 2014, Bc. Petra Bačová (supervisor: Kateřina Rubešová, Ph.D.)
  • Determination of oxygen content in mixed oxides of cobalt, 2013, Bc. Nikola Bašinová (supervisor: Vít Jakeš, Ph.D.)
  • Influence of preparation conditions on microstructure and optical properties of thin films LiNbO3, 2014, Bc. Dana Mikolášová (supervisor: Kateřina Rubešová, Ph.D.)
  • Preparation of LiNbO3 by sol-gel method for PLD targets, 2012, Bc. Jakub Erben (supervisor: Vít Jakeš, Ph.D.)
  • Cobalt oxide thermoelectricity prepared from sol-gel precursors, 2011, Bc. Tomáš Hlásek (supervisor: Kateřina Rubešová, Ph.D.)
  • Thin layers of LiNbO3 prepared by sol-gel methods in non-aqueous environment, 2011, Bc. Martina Chvalová (supervisor: Kateřina Rubešová, Ph.D.)

 Bachelor theses

  • Thin films of gadollinium-doped garnet for the detection of ionizing radiation, 2023, Tomáš Chvojka (supervisor: Kateřina Rubešová, Ph.D.)
  • Scintilation response of oxides based on PbHfO3 and its substitution derivatives, 2022, Herbert Kindl (supervisor: Kateřina Rubešová, Ph.D.)
  • Hydrothermal method used at perovskite phases preparation, 2022, Karin Paurová, (supervisor: Kateřina Rubešová, Ph.D.)
  • Lu2Hf2O7 as a material for the detection of hard radiation, 2022, Vojtěch Ševčík (supervisor: Vít Jakeš, Ph.D.)
  • LiAl5O8:V mixed oxide for thermal neutrons detection, 2021, Johana Melzerová (supervisor: Vít Jakeš, Ph.D.)
  • Improvement of Ce:YAG scintillation parameters using co-doping, 2020, Fedor Levchenko (supervisor: Kateřina Rubešová, Ph.D.)
  • Nanoparticles of ZnO doped with transition metals, 2019, Lukáš Blažek (supervisor: Ladislav Nádherný, Ph.D.)
  • Optimization of the spin-coating method for deposition of oxide layers in optical quality, 2018, Tomáš Tomaško (supervisor: Ladislav Nádherný, Ph.D.)
  • Effects of oxidation state and concentration of cerium in YAG on radioluminescent properties, 2017, Jan Havlíček (supervisor: Kateřina Rubešová, Ph.D.)
  • Preparation and characterization of ErNbO4 and YbNbO4 thin films, 2013, Vojtěch Polák (supervisor: Vít Jakeš, Ph.D.)
  • Chemistry and energy production (research work), 2011, Dana Mikolášová (supervisor: Dagmar Sýkorová, CSc.)
  • History and Current State of Synthesis of Artificial Diamonds (research work), 2010, Nikola Bašinová (supervisor: Vít Jakeš, Ph.D.)
  • Effect of chelating agents on the stability of Bi-Pb-Sr-Ca-Cu gel and subsequent preparation Bi-2223, 2009, Tomáš Hlásek (supervisor: Kateřina Rubešová, Ph.D.)
  • Preparation and analytical determination of Nb(V+) solutions for the subsequent sol-gel preparation of LiNbO3, 2009, Martina Chvalová (supervisor: Kateřina Rubešová, Ph.D.)
  • High-temperature superconductors – processing for practical use (literature research work) 2009, Jakub Erben (supervisor doc. Ing. Olga Smrčková, CSc.)
  • Ca,Sr-Cu mixed oxide preparation using sol-gel methods, influence of vanadium substitution on its properties, 2007, Pavol Zvonček (supervisor Kateřina Rubešová, Ph.D.)
[ikona] => molekula [obrazek] => [ogobrazek] => [pozadi] => [obsah] => [urlnadstranka] => [iduzel] => 47226 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/oxide-materials/students-work [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [47228] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [obsah] =>

Publications

2023

  • V. Doležal, V. Jakeš, J. Petrášek, P. Ctibor, O. Jankovský, K. Rubešová: Dielectric properties of (Eu,Ca)Cu3Ti4O12 ceramics prepared by a sol-gel method. Journal of Physics and Chemistry of Solids 178 (2023) 111334.

2022

  • V. Jakeš, J. Havlíček, F. Průša, R. Kučerková, M. Nikl, K. Rubešová: Translucent LiSr4(BO3)3 ceramics prepared by spark plasma sintering. Ceramics International 48 (2022) 15785.

  • K. Rubešová, V. Jakeš, O. Jankovský, M. Lojka, D. Sedmidubský: Bismuth calcium cobaltite thermoelectrics: A study of precursor reactivity and its influence on the phase formation. Journal of Physics and Chemistry of Solids 164 (2022) 110631.

  • J. Havlíček, K. Rubešová, V. Jakeš, R. Kučerková, A. Beitlerová, M. Nikl: Basic study of ceramic lithium strontium brates as thermal neutron scintillators. Journal of the American Ceramic Society 105 (2022) 4039.

  • T. Thoř, K. Rubešová, V. Jakeš, R. Kučerková, M. Nikl: Preparation and luminescence characterization of Cu-doped lithium aluminate ceramics within the Li2O-Al2O3 system. Journal of Sol-Gel Science and Technology 103 (2022) 898.

  • J. Havlíček, V. Jakeš, K. Rubešová, R. Kučerková, A. Beitlerová, M. Nikl: Heavily cerium-doped (Gd,La)AlO3 ceramic scintillators: Material optimization study. Ceramics International 48 (2022) 34720.

  • L. Spejchalová, O. Jankovský, K. Rubešová, V. Jakeš, A.-M. Lauermannová, D. Sedmidubský: Solid-liquid equilibria in the Bi-Ca-Co-O system. Journal of the European Ceramic Society 42 (2022) 5756.

  • J. Pejchal, V. Babin, M. Buryi, V. Laguta, F. Hájek, J. Páterek, L. Procházkouvá-Prouzová, L. Havlák, V. Czerneková, V. Vaněček, V. Doležal, J. Havlíček, K.
    Rubešová, P. Zemenová, A. Falvez, R. Král, V. Pankratov, K. Chernenko:  Untangling the controversy on Ce3+ luminescence in LaAlO3 crystals. Materials Advances 3 (2022) 3500T.

  • Thoř, K. Rubešová, V. Jakeš, R. Kučerková, J. Pejchal, M. Nikl: Titanium-doped LiAlO2 ceramics for neutron scintillation. Journal of Physics: Conference Series 2413 (2022) 012015.

  • J. Havlíček, K. Rubešová, V. Jakeš, J. Cajzl, F. Průša, R. Kučerková, M. Nikl: Eu-doped La1-xYxAlO3: Impact of Y/La ratio on optical properties. Ceramics-Silikáty 66 (2022) 78.

  • K. Rubešová, J. Havlíček, V. Jakeš, R. Kučerková, M. Nikl: Cerium and  europium doping of Ruddlesden-Popper aluminate phases and their radioluminescence properties. Journal of Physics: Conference Series 2413 (2022) 012011.

  • T. Thoř, K. Rubešová, V. Jakeš, R. Kučerková, J. Pejchal, M. Nikl: Titanium-doped LiAlO2 ceramics for neutron scintillation. Journal of Physics: Conference Series 2413 (2022) 012015.

2021

  • T. Thoř, K. Rubešová, V. Jakeš, D. Mikolášová, J. Cajzl, J. Havlíček, L. Nádherný, F. Průša, R. Kučerková, M. Nikl: Dense Ceramics of lanthanide-doped Lu2O3 prepared by spark plasma sintering. Journal of European Ceramic Society 41 (2021) 741.

2019

  • J. Pejchal, C. Guguschev, M. Schulze, V. Jary, E. Mihokova, K. Rubesova, V. Jakes, J. Barta, M. Nikl: Luminescence and scintillation properties of strontium hafnate and strontium zirconate single crystals. Optical Materials 98 (2019) 109494

  • K. Rubešová, D. Mikolášová, V. Jakeš: Bringing chemistry closer: Creating a 'living periodic table' for use in general and inorganic chemistry education. Ceramics-Silikaty 63 (2019) 413

  • Sedmidubský, D., V. Jakeš, K. Rubešová, P. Nekvindová, T. Hlásek, R. Yatskiv, P. Novák: Magnetism and optical properties of Yb3Al5O12 hosted Er3+ – experiment and theory. Journal of Alloys and Compounds 810 (2019) 151903.

  • J.–C. Grivel, K. Rubešová: Increase of the critical current density of MgB2 superconducting bulk samples by means of methylene blue dye additions. Physica C: Superconductivity and its applications 565 (2019) 1353506.

  • T. Thoř, K. Rubešová, V. Jakeš, J. Cajzl, L. Nádherný, D. Mikolášová, R. Kučerková, M. Nikl: Lanthanide-doped Lu2O3 phosphors and scintillators with green-to-red emission. Journal of Luminescence 215 (2019) 116647.

  • K. Rubešová, J. Havlíček, V. Jakeš, L. Nádherný, J. Cajzl, D. Pánek, T. Parkman, A. Beitlerová, R. Kučerková, F. Hájek, M. Nikl: Heavily Ce3+–doped Y3Al5O12 thin films deposited by a polymer sol-gel method for fast scintillation detectors. CrystEngComm 21 (2019) 5115.

  • V. Doležal, L. Nádherný, K. Rubešová, V. Jakeš, A. Michalcová, O. Jankovský, M. Poupon: LaMgAl11O19 synthesis using non-hydrolytic sol-gel methods. Ceramics International 45 (2019) 11233.

  • T. Hlásek, Y. Shi, J. H. Durrell, A. R. Dennis, D. K. Namburi, V. Plecháček, K. Rubešová, D. A. Cardwell, O. Jankovský: Cost-effective isothermal top-seeded melt-growth of single-domain YBCO superconducting ceramics. Solid State Sciences 88 (2019) 74.

  • V. Jakeš, K. Rubešová, J. Havlíček, V. Polák, D. Sedmidubský, J. Oswald: Preparation of Er-doped Yb3(Al,Fe)5O12 garnets. IOP Conference Series - Materials Science and Engineering 465 (2019) 012003.

  • T. Thoř, K. Rubešová, V. Jakeš, J. Cajzl, L. Nádherný, D. Mikolášová, A. Beitlerová, M. Nikl: Europium-doped Lu2O3 phosphors prepared by a sol-gel method. IOP Conference Series - Materials Science and Engineering 465 (2019) 012009.

2018

  • K. Rubešová, T. Thoř, V. Jakeš, D. Mikolášová, J. Maixner, O. Jankovský, J. Cajzl, L. Nádherný, A. Beitlerová, M. Nikl: Lanthanide-doped Y2O3 - the photoluminescent and radioluminescent properties of sol-gel prepared samples. Ceramics-Silikáty 62 (2018) 411.

  • D. Mikolášová, K. Rubešová, V. Jakeš, P. Nekvindová, Z. Cílová-Zlámalová, J. Oswald: Water-soluble polymers as chelating agents for the deposition of Er3+/Yb3+:LiNbO3 waveguiding films. Journal of Sol-Gel Science and Technology 86 (2018) 274.

2017

  • K. Rubešová, D. Mikolášová, T. Hlásek, V. Jakeš, P. Nekvindová, P. Matějka, M. Dendisová, Z. Cílová-Zlámalová, J. Oswald: Ageing of PVP/LiNbO3 solutions and its impact on the optical properties of Er3+/Yb3+:LiNbO3 waveguiding films. Journal of Physics and Chemistry of Solids 111 (2017) 343.

  • V. Jakeš, V. Polák, K. Rubešová, T. Hlásek, D. Mikolášová, L. Nádherný, P. Nekvindová, J. Oswald: Modification of Er:YbAG film microstructure with a sintering agent. IOP Conference Series - Materials Science and Engineering 266 (2017) 012004.

  • D. Mikolášová, K. Rubešová, V. Jakeš, P. Nekvindová, L. Nádherný, J. Oswald: Polyethylene glycol (PEG) used in the preparation of (Er3+/Yb3+):LiNbO3 waveguides. IOP Conference Series - Materials Science and Engineering 266 (2017) 012011.

2016

  • T. Hlásek, V. Polák, K. Rubešová, V. Jakeš, P. Nekvindová, O. Jankovský, D. Mikolášová, J. Oswald: Sol–gel-derived planar waveguides of Er3+:Yb3Al5O12 prepared by a polyvinylpyrrolidone-based method. Journal of Sol-Gel Science and Technology  80 (2016) 531.

  • V. Jakeš, K. Rubešová, T. Hlásek, V. Polák, J. Oswald, L. Nádherný: Thin films of ErNbO4 and YbNbO4 prepared by sol–gel. Journal of Sol-Gel Science and Technology 78 (2016) 600.

  • K. Rubešová, D. Mikolášová, T. Hlásek, V. Jakeš, P. Nekvindová, D. Bouša, J. Oswald: Waveguiging Er3+/Yb3+:LiNbO3 films prepared by a sol-gel method using polyvinylpyrrolidone. Journal of Luminescence 176 (2016) 260.

  • T. Hlásek, K. Rubešová, V. Jakeš, M. Nováček, J. Oswald, P. Fitl, J. Siegel, P. Macháč: Physical Vapor deposition of Er3+:Yb3Al5O12 thin films from sol-gel derived targets. Ceramics-Silikáty  60 (2016) 285.

2015

  • K. Rubešová, T. Hlásek, V. Jakeš, Š. Huber, J. Hejtmánek, D. Sedmidubský: Effect of a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox ceramics. Journal of the European Ceramic Society 35 (2015) 525.

  • T. Hlásek, K. Rubešová, V. Jakeš, P. Nekvindová, M. Kučera, S. Daniš, M. Veis, V. Havránek: Structural and waveguiding characteristics of Er3+:Yb3Al5−yGayO12 films grown by the liquid phase epitaxy. Optical Materials 49 (2015) 46.

  • T. Hlásek, K. Rubešová, V. Jakeš, P. Nekvindová, J. Oswald, M. Kučera, M. Hanuš: Influence of gallium on infrared luminescence in Er3+ doped Yb3Al5−yGayO12 films grown by the liquid phase epitaxy. Journal of Luminescence 164 (2015) 90.

  • D. Mikolášová, K. Rubešová, T. Hlásek, V. Jakeš, J. Oswald, J. Remsa: Influence of preparation conditions on the microstructure and optical properties of LiNbO3 thin films. Ceramics-Silikáty 59 (2015) 164.

2014

  • K. Rubešová, T. Hlásek, V. Jakeš, P. Matějka, J. Oswald, P. Holzhauser: Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb3Al5O12. Journal of Sol-Gel Science and Technology 70 (2014) 142.

  • T. Hlásek, K. Rubešová, V. Jakeš, O. Jankovský, J. Oswald: Infrared luminescence in Er3+:Yb3Al5O12 bulk ceramics prepared by sol-gel method. Journal of the European Ceramic Society 34 (2014) 3779.

  • O. Jankovský, D. Sedmidubský, K. Rubešová, Z. Sofer, J. Leitner, K. Růžička, P. Svoboda: Structure, non-stoichiometry and thermodynamic properties of Bi1.85Sr2Co1.85O7.7−δ ceramics. Thermochimica Acta 582 (2014) 40.

  • O. Jankovský, D. Sedmidubský, Z. Sofer, K. Rubešová, K. Růžička, P. Svoboda: Oxygen non-stoichiometry and thermodynamic properties of Bi2Sr2CoO6+δ ceramics. Journal of the European Ceramic Society  34 (2014) 1219.

  • J.-C. Grivel, C. V. Bertelsen, N. H. Andersen, K. Kepa, T. Hlásek, K. Rubešová, H. Huhtinen, P. Paturi: Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition. Journal of Physics: Conference Series 507 (2014) 012017.

  • J.-C. Grivel, A.  Alexiou, K. Rubešová, X. Tang, N. H.  Andersen, M. von Zimmermann, A. Watenphul: Preparation and Characterization of Mg1−xB2 Bulk Samples and Cu/Nb Sheathed Wires with Low Grade Amorphous Boron Powder. Journal of Superconductivity and Novel Magnetism 27 (2014) 497.

2013

  • M. Jelínek, J. Oswald, T. Kocourek, K. Rubešová, P. Nekvindová, D. Chvostová, A. Dejneka,  V. Železný, V. Studnička, K. Jurek: Optical properties of laser-prepared Er-and Er,Yb-doped LiNbO3 waveguiding layers. Laser Physics 23 (2013) 105819.

  • V. Jakeš, K. Rubešová, J. Erben, P. Nekvindová, M. Jelínek: Modified sol-gel preparation of LiNbO3 target for PLD. Optical Materials 35 (2013) 2540.

  • J.-C. Grivel, K. Kepa, T. Hlásek, N. H. Andersen, K. Rubešová: Preparation and characterization of Bi2Sr2CaCu2O8+δ thin films on MgO single crystal substrates by chemical solution deposition. Physica C-Superconductivity and Its Applications 486 (2013) 32.

  • M. Jelínek, V. Havránek, J. Remsa, T. Kocourek, A. Vincze, J. Bruncko, V. Studnička, K. Rubešová: Composition, XRD and morphology study of laser prepared LiNbO3 films. Applied Physics A-Materials Science & Processing 110 (2013) 883.

2012

  • K. Rubešová, T. Hlásek, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Bi-Sr-Co-O thermoelectrics prepared by sol-gel methods with modified gel decomposition. IOP Conference Series-Materials Science and Engineering 30 (2012) 302012.

  • K. Rubešová, V. Jakeš, T. Hlásek, P. Vašek, P. Matějka: Gel stabilization in chelate sol–gel preparation of Bi-2223 superconductors. Journal of Physics and Chemistry of Solids 73 (2012) 448.

  • D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek: Phase Equilibria in Ca-Co-O system. Journal of Solid State Chemistry 194 (2012) 199.

  • K. Rubešová, T. Hlásek, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Water based sol-gel methods used for Bi-222 thermoelectrics preparation. Journal of Sol-Gel Science and Technology  64 (2012) 93.

  • J. Hejtmánek, K. Knížek, M. Maryško, Z. Jirák, D. Sedmidubský, O. Jankovský, Š. Huber, P. Masschelein, B. Lenoir: Magnetic and Magnetotransport Properties of Misfit Cobaltate Ca3Co3.93O9+d. Journal of Applied Physics 111 (2012) 07D715.

  • J. Leitner, D. Sedmidubský, K. Růžička, P. Svoboda: Heat capacity, enthalpy and entropy of SrBi2O4 and Sr2Bi2O5. Thermochimica Acta 531 (2012) 60.

2011

  • V. Bartůněk, O. Smrčková: Preparation of the silver-superconductor composite by deposition of the silver nanoparticles in the bismuth cuprate superconductor. Journal of  Superconductivity and Novel Magnetism 24 (2011) 1241.

  • J. Leitner, V. Jakeš, Z. Sofer, D. Sedmidubský, K. Růžička, P. Svoboda: Heat capacity, enthalpy and entropy of ternary bismuth-tantalum oxides, Journal of Solid State Chemistry 184 (2011) 241.

  • J. Leitner, M. Nevřiva, D. Sedmidubský, P. Voňka: Enthalpy of formation of selected mixed oxides in a CaO-SrO-Bi2O3-Nb2O5 system. Journal of Alloys and Compounds 509 (2011) 4940.

  • Z. Sofer, D. Sedmidubský, Š. Huber, J. Hejtmánek, M. Maryško, K. Jurek, M. Mikulics: Flux growth of ZnO crystals doped by transition metals. Journal of Crystal Growth 314 (2011) 123.

2010

  • V. Bartůněk, O. Smrčková: Preparation and size control of cerium(IV) oxide ultrafine nanoparticles. Micro Nano Letters 5 (2010) 222.

  • J. Leitner, P. Voňka, D. Sedmidubský, P. Svoboda: Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides. Thermochimica Acta 497 (2010) 7.

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 47228 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/oxide-materials/publications [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [47251] => stdClass Object ( [nazev] => Conferences [seo_title] => Conferences [seo_desc] => [autor] => [autor_email] => [perex] =>

Selected conference contributions

[ikona] => svet [obrazek] => [obsah] =>

E-MRS 2019 Fall Meeting, 16–19 September, 2019, Warsaw, Poland.

Presentation:
K. Rubešová, D. Mikolášová, J. Havlíček, T. Hlásek, V. Jakeš, P. Nekvindová, R. Kučerková, M. Nikl, J. Oswald: Thin films for optics and optoelectronics deposited using sol-gel methods

8th International Symposium on Optical Materials, 9–14 June, 2019, Wroclaw, Poland.

Presentation:
K. Rubešová, J. Havlíček, V. Jakeš, L. Nádherný, J. Cajzl, D. Pánek, T. Parkman, A. Beitlerová, R. Kučerková, F. Hájek, M. Nikl: Heavily doped Ce:YAG thin films deposited by a sol-gel method with fast scintillation decays

Poster:
J. Havlíček, K. Rubešová, V. Jakeš, J. Cajzl, R. Kučerková, M. Nikl: Europium doped (Y, La)AlO3 perovskites prepared as dense ceramics

D. Mikolášová, T. Thoř, K. Rubešová, V. Jakeš, J. Cajzl, L. Nádherný, R. Kučerková, M. Nikl: Pr, Dy, Tb, Eu doped Lu2O3 – green-to-red phosphors and scintillators

D. Mikolášová, T. Thoř, K. Rubešová, V. Jakeš, P. Nekvindová, J. Oswald: Waveguiding Er/Yb:LiNbO3 thin films deposited using water-soluble polymers

 

The 2018 MRS Fall Meeting and Exhibit, 25–30 November, 2018, Boston, Massachusetts, USA.

L. Nádherný, V. Doležal, V. Jakeš, K. Rubešová: Nano-grained hexagonal LaMgAl11O19 doped with Ce for optical applications

The 19th International Sol-Gel Conference, 3–8 September, 2017, Liège, Belgium.

L. Nádherný, V. Doležal, V. Jakeš, and K. Rubešová. Synthesis of hexagonal aluminate LaMgAl11O19 using non-hydrolytic sol-gel methods. (poster)

Development of Materials Science in Research and Education 2016, 29 August – 2 September, 2016, Pavlov, Czech Republic.

Presentation:
V. Jakeš, V. Polák, T. Hlásek, K. Rubešová, J. Oswald: Preparation of waveguiding Er:YbAG thin films by spin-coating

D. Mikolášová, K. Rubešová, V. Jakeš, T. Hlásek, J. Oswald: Use of water-soluble polymers for the (Er3+/Yb3+):LiNbO3 thin films preparation by sol-gel method

K. Rubešová, V. Jakeš, T. Hlásek, D. Mikolášová: Perspectives on sol-gel method: crystal growth of functional materials

Sol-Gel 2015, 6–11 September, 2015, Kyoto, Japan.

Poster:
T. Hlásek, K. Rubešová, V. Jakeš, P. Nekvindová, J. Oswald: Erbium doped Yb3Al5O12 thin films prepared by various techniques using sol-gel methods

V. Jakeš, V. Polák, K. Rubešová, T. Hlásek, J. Oswald: Thin layers of ErNbO4 and YbNbO4 – preparation and characterization

K. Rubešová, D. Mikolášová, T. hlásek, V. Polák, V. Jakeš, J. Oswald: Optically active thin layers prepared using polyvinylpyrrolidone polymer

 

Sol-Gel 2013, 25–30 August, 2013, Madrid, Spain.

Poster:
K. Rubešová, V. Jakeš, P. Nekvindová, J. Remsa, J. Oswald: Annealing effect on Er3+/Yb3+ LiNbO3 sol-gel prepared thin films

V. Jakeš, K. Rubešová, D. Mikolášová, J. Maixner, J. Oswald: Solubility of erbium and ytterbium in LiNbO3 thin films prepared by sol-gel deposition

T. Hlásek, K. Rubešová, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Comparison of different sintering methods for the sol-gel derived precursor of thermoelectric cobaltite Bi2Sr2Co0.82Ox

Development of Materials Science in Research and Education 2013, 9–13 September, 2013, Kežmarské Žĺaby, Slovakia.

Presentation:
K. Rubešová, D. Sedmidubský, B. Švecová: Innovation of general and inorganic chemistry education in ICT Prague – Operational Programme Prague–Adaptability

L. Nádherný, D. Sedmidubský, O. Jankovský, Z. Sofer, J. Leitner: Phase diagram of Zn-Mn-O system for diluted magnetic semiconductor study

V. Jakeš, N. Bašinová, K. Rubešová: Determination of oxygen content in mixed cobalt oxides

T. Hlásek, K. Rubešová, V. Jakeš, P. Matějka, P. Holzhauser: Preparation of ytterbium and erbium 2-methoxyethoxides applicable at the sol-gel synthesis of RE garnets 

Development of Materials Science in Research and Education 2012, 3–7 September, 2012, Lednice, Czech Republic.

Presentation:
M. Chvalová, K. Rubešová, V. Jakeš, P. Nekvindová: Thin films of lithium niobate prepared by sol-gel method

T. Hlásek, K. Rubešová, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Comparison of various wet chemical methods used for cobaltite thermoelectrics synthesis

V. Jakeš, K. Rubešová, M. Chvalová, J. erben, M. Jelínek: Optimized sol-gel synthesis of LiNbO3 for PLD targets

K. Rubešová: Material science education at ICT Prague

E-MRS 2011 Fall Meeting, 19–23 September, 2011, Warsaw, Poland.

Presentation:
K. Rubešová, T. Hlásek, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Bi-Sr-Co-O thermoelectrics prepared by sol-gel methods with modified gel decomposition

Poster:
V. Jakeš, M. Chvalová, K. Rubešová, P. Nekvindová, M. Jelínek: Lithium niobate with improved microstructure as targets for PLD

 

Development of Materials Science in Research and Education 2011, 29 August – 2 September, 2011, Kežmarské Žĺaby, Slovakia.

Presentation:
K. Rubešová, T. Hlásek, V. Jakeš, D. Sedmidubský, J. Hejtmánek: Water based sol-gel methods use dat Bi-Sr-Co-O thermoelectrics synthesis

V. Jakeš, J. Erben, K. Rubešová, P. Nekvindová, M. Jelínek: Lithium niobate prepared by sol-gel methods as targets for pulsed laser deposition

32. mezinárodní český a slovenský kalorimetrický seminář, 24–28 May, 2010, Lísek u Bystřice nad Pernštejnem, Czech Republic.

Presentation:
V. Jakeš, D. Sedmidubský, O. Jankovský, Z. Sofer, J. Leitner: Termická analýza a výpočet fázového diagramu systému Ca-Co-O

 

Sol-Gel 2009, 23–27 August, 2009, Porto de Galinhas, Brazil.

Poster:
V. Jakeš, K. Rubešová, P. Zvonček, P. Vašek: Multi-powder proces of Bi-cuprates preparation using sol-gel prepared precursors

K. Rubešová, V. Jakeš, T. Hlásek, P. Vašek: Use of EDTA and triethanolammine as chelating agents in Bi-superconductors sol-gel preparation

[urlnadstranka] => [iduzel] => 47251 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/oxide-materials/conferences [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [40227] => stdClass Object ( [obsah] => [iduzel] => 40227 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) ) [iduzel] => 28557 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/oxide-materials [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [29090] => stdClass Object ( [nazev] => Coordination Chemistry [seo_title] => Coordination Chemistry [seo_desc] => [autor] => [autor_email] => [obsah] =>

Our group is focused on study stereochemistry of coordination compounds, mainly on relation between structure of ligand and final configuration of complex. Detail information is here.

Research team

Head of group                                                           

Ing. Irena Hoskovcová, CSc.

Assistant Professors

Ing. Jan Holub, Ph.D.
Ing. Hana Kotoučová, Ph.D.
Ing. Martin Pižl, Ph.D.

PGS

Ing. Alice Kulagová

Technicians

Alena Králová

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [39113] => stdClass Object ( [nazev] => Research team [seo_title] => Research team [seo_desc] => [autor] => Martin Pižl [autor_email] => [perex] => [ikona] => kluk-cerny [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Head of group                                                           

Ing. Irena Hoskovcová, CSc.

Assistant Professors

Ing. Jan Holub, Ph.D.
Ing. Hana Kotoučová, Ph.D.
Ing. Martin Pižl, Ph.D.

PGS

Ing. Alice Kulagová

Technicians

Alice Kulagová

[urlnadstranka] => [iduzel] => 39113 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry/people [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [39114] => stdClass Object ( [nazev] => Student works [seo_title] => Student works [seo_desc] => [autor] => [autor_email] => [obsah] =>

Offered works

If you are interested in, come to laboratory A213, building A, 2nd floor .

Running students scientific works

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 39114 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry/works [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [39115] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => Martin Pižl [autor_email] => [perex] => [ikona] => banka [obrazek] => [obsah] =>

Electrochemistry of chromium and iron Carbene complexes (colaboration with Dep. of organic chemistry UCT Prague and J. Heyrovský institute of physical chemistry of CAS)

  • relationship between structure and redox properties
  • study of mechanism electrochemical reduction and oxidation using spektroelectrochemistry methods (UV-Vis, IR, MS)
  • theoretical calculations of distributions and energies of molecular orbitals (HOMO and LUMO)

 

Synthesis and characterization of complexes containing Schiff base ligand derived from vitamins B

  • study of effects for reaction between metal and ligand, synthesis compounds close to the biomolecules
  • influence of central atom
  • effect of reaction conditions
  • determinations the rate stability of complexes using spectroscopic and electrochemical methods
[urlnadstranka] => [iduzel] => 39115 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry/research [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [39116] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [obsah] =>

2024

  • Sumner, E.; Pižl, M.; McQuaid, K. T.; Hartl, F. Nitrile Substituents at the Conjugated Dipyridophenazine Moiety as Infrared Redox Markers in Electrochemically Reduced Heteroleptic Ru(II) Polypyridyl Complexes. Inorganic Chemistry 2024, 63 (5), 2460-2469.

2023

  • Štefanková, D.; Skrbek, K.; Pižl, M.; Bartůněk, V. Nano and mesosized selenium and its synthesis using the ascorbic acid route. Journal of Non-Crystalline Solids 2023, 616, 122462. 
  • Kearney, L.; Brandon, M. P.; Coleman, A.; Chippindale, A. M.; Hartl, F.; Lalrempuia, R.; Pižl, M.; Pryce, M. T. Ligand-Structure Effects on N-Heterocyclic Carbene Rhenium Photo- and Electrocatalysts of CO2 Reduction. Molecules 2023, 28 (10), 4149.

2022

  • Pižl, M.; Hunter, B. M.; Sazanovich, I. V.; Towrie, M.; Gray, H. B.; Záliš, S.; Vlček, A., Excitation-Wavelength-Dependent Photophysics of d8d8 Di-isocyanide Complexes. Inorganic Chemistry 2022, 61 (6), 2745-2759

2021

  • Taylor, J. O.; Pižl, M.; Kloz, M.; Rebarz, M.; McCusker, C. E.; McCusker, J. K.; Záliš, S.; Hartl, F.; Vlček, A., Optical and Infrared Spectroelectrochemical Studies of CN-Substituted Bipyridyl Complexes of Ruthenium(II).Inorganic Chemistry 2021, 60 (6), 3514-3523

2020

  • Sondermann, C.; Pižl, M.; Paretzki, A.; Feil, C.; Ringenberg, M. R.; Záliš, S.; Kaim, W., Analysis of a Diimine-Organonickel Redox Series. Eur J Inorg Chem 2020, 2020 (31), 3010-3015.
  • Pižl, M.; Picchiotti, A.; Rebarz, M.; Lenngren, N.; Yingliang, L.; Záliš, S.; Kloz, M.; Vlček, A., Time-Resolved Femtosecond Stimulated Raman Spectra and DFT Anharmonic Vibrational Analysis of an Electronically Excited Rhenium Photosensitizer. The Journal of Physical Chemistry A 2020, 124 (7), 1253-1265.
  • Guricová, M.; Tobrman, T.; Pižl, M.; Žižková, S.; Hoskovcová, I.; Dvořák, D., Synthesis, characterisation and electrochemical properties of Cr(0) aminocarbene complexes containing condensed heteroaromatic moiety. J Organomet Chem 2020, 905, 121023.

2019

  • Takematsu, K.; Pospíšil, P.; Pižl, M.; Towrie, M.; Heyda, J.; Záliš, S.; Kaiser, J. T.; Winkler, J. R.; Gray, H. B.; Vlček, A., Hole Hopping Across a Protein–Protein Interface. The Journal of Physical Chemistry B 2019, 123 (7), 1578-1591.
  • Zelenka, J.; Svobodová, E.; Tarábek, J.; Hoskovcová, I.; Boguschová, V.; Bailly, S.; Sikorski, M.; Roithová, J.; Cibulka, R., Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates.
  • Organic Letters 2019, 21 (1), 114-119.

2018

  • Mojr, V.; Pitrová, G.; Straková, K.; Prukała, D.; Brazevic, S.; Svobodová, E.; Hoskovcová, I.; Burdziński, G.; Slanina, T.; Sikorski, M.; Cibulka, R., Flavin Photocatalysts for Visible-Light [2+2] Cycloadditions: Structure, Reactivity and Reaction Mechanism. ChemCatChem 2018, 10 (4), 849-858.
  • Chen, L.; Lim, K. J. C.; Babra, T. S.; Taylor, J. O.; Pižl, M.; Evans, R.; Chippindale, A. M.; Hartl, F.; Colquhoun, H. M.; Greenland, B. W. A macrocyclic receptor containing two viologen species connected by conjugated terphenyl groups. Organic & Biomolecular Chemistry 2018, 16 (27), 5006-5015
  • Pižl, M.; Jankovský, O.; Guricová, M.; Hoskovcová, I.; Sedmidubský, D.; Bartůněk, V. Mixed Yttrium–Ytterbium–Erbium Schiff Base Complex as a Model Precursor for Mixed Nanosized Rare Earths Oxides. Journal of Cluster Science 2018, 29 (4), 549-553
  • Guricová, M.; Pižl, M.; Smékal, Z.; Nádherný, L.; Čejka, J.; Eigner, V.; Hoskovcová, I., Template synthesis and structure of Co(II), Ni(II), and Cu(II) complexes with pyridoxilydenetaurinate Schiff base ligand. Inorganica Chimica Acta 2018, 477, 248-256.

2017

  • Pižl, M.; Hunter, B. M.; Greetham, G. M.; Towrie, M.; Záliš, S.; Gray, H. B.; Vlček, A., Ultrafast Wiggling and Jiggling: Ir2(1,8-diisocyanomenthane)42+. The Journal of Physical Chemistry A 2017, 121 (48), 9275-9283.
  • Murašková, V.; Szabó, N.; Pižl, M.; Hoskovcová, I.; Dušek, M.; Huber, Š.; Sedmidubský, D., Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with CC bond formation – Structure, spectral and magnetic properties. Inorganica Chimica Acta  2017, 461, 111-119.
  • Pižl, M.; Jankovský, O.; Ulbrich, P.; Szabó, N.; Hoskovcová, I.; Sedmidubský, D.; Bartůněk, V., Facile preparation of nanosized yttrium oxide by the thermal decomposition of amorphous Schiff base yttrium complex precursor. Journal of Organometallic Chemistry  2017, 830, 146-149.

2016

  • Langmaier, J.; Pižl, M.; Samec, Z.; Záliš, S.; Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations. The Journal of Physical Chemistry A 2016, 120 (37), 7344-7350.
  • Váňová, H.; Tobrman, T.; Hoskovcová, I.; Dvořák, D.; Modular Synthesis of Fischer Biscarbene Complexes of Chromium. Organometallics, 2016, 35(17), 2999-3006

2015

  • Metelková, R.; Hoskovcová, I.; Polášek, M.; Urban, J.; David, T.; Ludvík, J.; Stereoisomeric products of electrochemical reduction of heterocyclic Fischer aminocarbene Cr(0) complexes. Development of the electrochemistry-mass spectrometry tandem approach using biphasic (acetonitrile-hexane) preparative electrolysis. Electrochimica Acta 2015, 162, 17-23

2014

  • Kvapilová, H.; Hoskovcová, I.; Ludvík, J.; Záliš, S.; Theoretical Predictions of Redox Potentials of Fisher-Type Chromium Aminocarbene Complexes. Organometalics, 2014, 33, 4964-4972
  • Kvapilová, H.; Eigner, V.; Hoskovcová, I.; Tobrman, T.; Čejka, J.; Záliš, S.; Structural flexibility of 2-hetaryl chromium aminocarbene complexes: Experimental and theoretical evidence. Inorganica Chimica Acta 2014, 421, 439-445

Chapter in collection

  • ELECTROCHEMISTRY OF FISCHER AMINOCARBENE
    COMPLEXES: EFFECTS OF STRUCTURE ON REDOX
    PROPERTIES, ELECTRON DISTRIBUTION, AND
    REACTION MECHANISMS
    Jiří Ludvík, Irena Hoskovcová
    Chapter 48, p.653-665 in:
    Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book,
    First Edition. Edited by Armando J. L. Pombeiro.
    © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc
[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 39116 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry/publication [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [39117] => stdClass Object ( [nazev] => Conferences [seo_title] => Conferences [seo_desc] => [autor] => [autor_email] => [obsah] =>

2019

  • Pižl, M.; Fuse, M.; Taylor, J. O.; Donaldson, P.; Hartl, F.;  Barone, V.; Vlček, A.; Záliš, S;  The International Symposia on the Photochemistry and Photophysics of Coordination Compounds, Hong Kong (CN), 14.-19.7.2019
  • Pižl, M.; Fuse, M.; Tasinato, N.; Vlček, A.; Barone, V.; Záliš, S.; Young researchers meet molecular spectroscopy, Pisa (I); 4.-5.4.2019

2018

  • Guricová, M; Guldanová, R.; Tobrman, T.; Dvořák, D.; Hoskovcová, I.; 69th Annual ISE Meeting, Bologna (I); 2.-7.9. 2018
  • Pižl, M.; Fuse, M.; Tasinato, N.; Barone,B.; Vlček, A.; Záliš, S.; Photoinduced Processes in Embedded Systems; Pisa (I); 24.-27.6.2018
  • Záliš, S.; Pižl, M.; Fuse, M.; Barone,B.; Vlček, A.; 16th International Congress of Quantum Chemistry; Menton (F); 18.-23.6.2018
  • Pižl, M.; Záliš, S.; Seminar os students UFCH JH AV ČR; Prague (CZ); 12.-13.6.2018
  • Záliš, S.; Pižl, M.; Vlček, A.; Gray, H.B.; 7th JCS S​YMPOSIUM; Prague (CZ); 21.-24.5.2018
  • Záliš, S.; Pižl, M.; Heyda, J.; Vlček Jr., A.; 3rd MOLIM General Meeting; Budapest (H); 19.-21.4.2018
  • Pižl, M.; Fuse, M.; Barone, V.; Antonín Vlček, A.; Záliš, S.; Anharmonicity in Medium-Sized Molecules and Clusters; Budapest (H); 16.-19.4.2018

2017

  • Záliš, S.;  Heyda, J.; Pižl, M.; Vlček Jr., A.; Modeling Interactions in Biomolecules VIII; Plzeň (CZ); 3.-8.9.2017
  • Pižl, M.; Guricová, M.; Hoskovcová, I.; Záliš, S.; Modeling Interactions in Biomolecules VIII; Plzeň (CZ); 3.-8.9.2017
  • Pižl, M.; Záliš, S.; Heyda, J.; Vlček Jr., A.; 11th Triennial Congress of the World Association of Theoretical and Computational Chemists; Munich (D); 27.8.-1.9.2017
  • Pižl, M.; Vlček Jr., A.; Towrie, M.; Greetham, G.; Gray, H.B.; Záliš, S.; 22nd International Symposium on Photochemistry and Photophysics of Coordination Compounds; Oxford (UK); 9.-14.7.2017
  • Taylor, J.; Pižl, M.; Donaldson, P.;  Vlček Jr., A.; Hartl, F.; 22nd International Symposium on Photochemistry and Photophysics of Coordination Compounds; Oxford (UK); 9.-14.7.201
  • Guricová, M.; Hoskovcová, I.; Guldanová, R.; Tobrman, T.; Dvořák, D.; Ludvík, J.; 50th Heyrovsky disscusion - Molecular Electrochemistry in Organic and Organometallic Research; Třešť (CZ); 18.-22.6.2017
  • Pižl, M.; Záliš, S.; Paretzki, A.; Kaim, W; 50th Heyrovsky disscusion - Molecular Electrochemistry in Organic and Organometallic Research; Třešť (CZ); 18.-22.6.2017
  • Záliš, S.; Pižl, M.; Vlček Jr., A; Colloquium Spectroscopicum Internationale XL; Pisa (I); 11.-16.6.2017
  • Pižl, M.; Záliš, S.; Vlček Jr., A; Seminar of students UFCH JH AV ČR; Liblice (CZ); 9.-10.5.2017

2016

  •  Záliš, S.; Pižl, M.; Heyda, J.; Vlček Jr., A.; 2nd MOLIM General Meeting; Dubrovník (HR); 10.-12.10.2016
  • Guricová, M.; Smékal, Z.; Hoskovcová, I.; 68. sjezd chemiků; Praha (CZ); 4.-7.9.2016
  • Pižl, M.; Hoskovcová, I.; Záliš, S.; 68. sjezd chemiků; Praha (CZ); 4.-7.9.2016
  • Pižl, M.; Šebera, J.; Krtil, P.; Záliš, S.; 49th Heyrovský Discussion - Electrochemical Interfaces at the Nanoscale; Třešť (CZ)  29.5.-2.6. 2016
  • Guricová, M.; Hoskovcová, I.; Seminar of students ÚFCH JH AV ČR; Liblice (CZ); 10.-11.5.2016
  • Pižl, M.; Hoskovcová, I.; Záliš, S.; Seminar of students ÚFCH JH AV ČR; Liblice (CZ); 10.-11.5.2016
  • Pižl, M.; Hoskovcová, I.; Záliš, S.; COST Perspect CM1202 WG Meetings 1/2 and Training School; Tarragona (ES); 11.-14.4. 2016

 2014

  • Murašková, V.;  Pižl, M.; Hoskovcová, I.; I. Pokroky anorganické chemie; Třešť (CZ); 22.-26.6.2014

 2013

  • Murašková, V.;  Szabó, N.; Hoskovcová I.;  XXIV. International Conference on Coordination and Bioinorganic Chemistry; Smolenice (SK);  2.-7.6. 2013
[urlnadstranka] => [iduzel] => 39117 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry/conferences [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 29090 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/coordination-chemistry [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [29064] => stdClass Object ( [nazev] => Materials for Photonics [seo_title] => Materials for Photonics [seo_desc] => [autor] => uach [autor_email] => [obsah] =>

Photonics is concerned with the use of photons to work with or to replace electrons in certain communications, computer, or control applications traditionally carried out by electronics. Photonics has already proved to be one of the key technologies of the information age.

Our profile

In our laboratory, we study fabrication and properties of active and passive planar and channel optical waveguides as basic elements of photonics devices in optical crystals and optical glasses.

Our research is supported by GACR grants and the Czech Ministry of Education, Youth and Sports.

Head of the group

Assoc. Prof. Pavla Nekvindova, MSc, PhD

Assistant Professors

Blanka Kopecka, MSc, PhD
Petr Varak, MSc, PhD

PhD students

Jakub Volf, MSc 

Technicians

Lenka Turkova

Students

Sara Ryvolova
Ivana Venkrbcova
Olga Samuseva

Alumni

Jan Baborak, MSc, PhD (ADVACAM s.r.o.)
Jakub Cajzl, MSc, PhD (Ceska sporitelna)
Karla Jenickova, MSc
Sona Vytykacova, MSc, PhD (now: Ústav fotoniky a elektroniky, AV ČR)
Banu Akhetova, MSc (now: Nazarbayev University)
Pavlina Tresnakova, MSc, PhD (now: VŠCHT Praha)
Stanislava Stara, MSc, PhD (now: Preciosa)
Linda Salavcova, MSc, PhD (now: Universita Pardubice)
Hana Malichova, MSc (now: VŠCHT Praha)
Stanislav Stanek, MSc, PhD (now: SAINT-GOBAIN ADFORS CZ s.r.o.)
Jakub Altsmid, MSc, PhD (now: Preciosa a.s.)

News

Our students Petr Varak and Jan Baborak have succesfully passed the final exam obtaining thus the title PhD. Congratulations!
(date: December 2023)

We have new mode spectroscopy - Metricon Prism Coupler. For more information please go to section "Research".
(date: January 2011)

High level of knowledge of our students and researchers has been proved by obtaining numerous awards:

2014

The best presentation award on the E-MRS Fall Meeting 2014 (Pavla Nekvindová, Jakub Cajzl)

SPIE award for the 3rd best student presentation on Photonics Prague 2014 conference (Jakub Cajzl)

Award of the CRYTUR’s company (Sona Vytykacova)

2013

The Foundation Preciosa award (Stanislav Stanek, Sona Vytykacova)

2011

The Foundation Preciosa award (Stanislav Staněk, Jakub Cajzl)
Awards of the Moser's company (Soňa Vytykáčová)
Awards of the ICT and the Unipetrol company for outstanding disertation thesis (Blanka Švecová)

2009

The Van Derck Fréchette International Young Researcher Award (Stanislava Stará, Blanka Švecová)

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [29075] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

Research

  • Fabrication and study of properties of the K+, Ag+, Cu+, Cu2+ and Li+ optical waveguides in dielectric materials
  • Fabrication and study of properties of special optical glasses containing the ions of d- a f-elements
  • Study of properties of surface layers fabricated by ion implantation
  • Diffusion processes occurred by ion exchange
  • Localized doping of lasing active ions into glass substrates

Experiments

  • Equipment for fabrication of optical waveguides by thermal ion exchange
  • Equipment for the electric field assisted ion exchange

Measurements methods

M-line spectroscopy (Metricon Prism Coupler)

The Metricon Model Prism Coupler utilizes advanced optical waveguiding techniques to rapidly and accurately measure both the thickness and the refractive index/birefringence of dielectric and polymer films as well as refractive index of bulk materials at five wavelenghts (473, 633, 964, 1311 or 1552 nm). The method offers unique advantages over conventional refractometers and instruments based on ellipsometry or spectrophotometry.

M-line spectroscopy (Metricon Prism Coupler)
The Metricon Model Prism Coupler.
  • completely general knowledge of optical properties of film/substrate required,
  • routine index resolution of ±.0005 (accuracy of up to ±.0001 available for many applications),
  • routine index resolution of ±.0003 (resolution of up to ±.00005 available for many applications),
  • high accuracy index measurement of bulk materials,
  • rapid characterization of thin films or diffused optical waveguides,
  • simple measurement of index vs wavelength,
  • options to measure waveguide loss,
  • wide index measurement range (1.0 – 3.35).

Dark Mode Spectroscopy (671 nm) & Prisms-coupling Mode Spectroscopy (632 nm)

Refractive index depth profile and parameters of surface optical layers (i.e. refractive index increment, surface refractive index n0)

He-Ne laser
Characterization of optical properties by the Prism-coupling Mode Spectroscopy (He-Ne laser, 632 nm), photo: Ales Novak

Optical Polarization Microscope

Control of surface quality, striae visualization and depths of the optical layers

Habilitation thesis

"Inorganic materials for photonics application" - P. Nekvindova, 2016

Recent and current dissertation thesis

"Study of nonlinear optical properties of metal nanoparticles prepared in inorganic materials" - S. Vytykacova (current)

"Study of the luminescence properties of lanthanides in dielectric materials with respect to the crystal field influence" - J. Cajzl (current)

"Development of novel erbium-ytterbium silicate glass for planar optical waveguide amplifier" - S. Stanek (current)

"Preaparation and optical properties study of a new silicate glasses doped by laser active ions for photonics purposes" - S. Stara-Janakova, 2011

"The study of fabrication and properties of planar optical waveguides in dielectric materials" - B. Svecova, 2010

Recent diploma thesis

"The study of optical properties of nanocrystal diamond thin films" - B. Akhetova, 2016

"Influence of silver metal nanoparticles on properties of glasses containing erbium ions" - B. Chladekova, 2016

"Fabrication of thin optical layer containing copper via sol-gel method, ion exchange and ion implantation" - P. Vařák, 2016

"Study of preparation and properties of silicate glasses containing silver nanoparticles" - S. Vytykacova, 2014

"Erbium in the lithium niobate structure and its luminescence properties" - J. Cajzl, 2012

"Characterization of optical properties of waveguides in the new Zn-Er,Yb silicate glasses" - S. Stanek, 2011

"Effect of conductivity and structure in the electric field assisted process of optical waveguides burying in silicate glasses" - J. Altsmid, 2011

"Study of optical waveguides fabricated by ion exchange in erbium and ytterbium doped silicate glasses" - J. Malek, 2009

"Ion exchange fabrication and study of the Cu(I) planar waveguides in novel silicate glasses" - H. Malichova, 2007

"Porous glass doping by Er3+ for photonics applications" - S. Rubas, 2007

Collaborations

Institutes of Czech Academy of Science:

   Nuclear Physics Institute
   Institute of Physics
   Institute of Photonics and Electronics
   Institute of Chemical Process Fundamentals
  

Faculty of Mathematics and Physics (Charles University Prague)

Czech Technical University in Prague:

   Faculty of Electrical Engineering
   Faculty of Nuclear Sciences and Physical Engineering
  

TU Wien, Austria

Helmholtz-Zentrum Dresden-Rossendorf, Germany

IFAC CNR Florence, Italy

SQS vlaknova optika a.s., Czech Republic

Preciosa, Czech Republic

[iduzel] => 29075 [canonical_url] => //uach.vscht.cz/research/materials-for-photonics/research [skupina_www] => Array ( ) [url] => /research/materials-for-photonics/research [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29076] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [obsah] =>

2024

"Heat treatment and fiber drawing effect on the matrix structure and fluorescence lifetime of Er- and Tm-doped silica optical fibers" - P. Vařák, M. Kamrádek, J. Aubrecht, O. Podrazký, J. Mrázek, I. Bartoň, A. Michalcová, M. Franczyk, R. Buczyński, I. Kašík, P. Peterka, P. Honzátko, Optical Materials Express 14 (2024) 1048, https://doi.org/10.1364/OME.520422

"Crystallization and luminescence properties of Er/Yb-doped glass-ceramics based on A2O-ZnO-SiO2 system (A = Li, Na, K, Cs)" - P. Vařák, J. Baborák, E. Véron, A. Michalcová, J. Volf, M. Allix, P. Nekvindová, Journal of Non-Crystalline Solids 626 (2024) 122783, https://doi.org/10.1016/j.jnoncrysol.2023.122783

2023

„The morphology and composition of nanosized amorphous-phase separation in the Y2O3-Al2O3-SiO2 glass system“ - J. Baborák, P. Vařák, A. Canizares, M. Rada, C. Genevois, M.J. Pitcher, E. Veron, A. Zandona, M. Allix, P. Nekvindová, Ceramics International 49 (2023) 40821. https://doi.org/10.1016/j.ceramint.2023.10.067

„Key melt properties for controlled synthesis of glass beads by aerodynamic levitation coupled to laser heating“ - J. Baborák, M. Yembele, P. Vařák, S. Ory, E. Véron, M.J. Pitcher, M. Allix, P. Nekvindová, A. Zandonà, Int J Appl Glass Sci. (2023) 14:455, https://doi.org/10.1111/ijag.16627

„Erbium–bismuth-doped germanium silicate active optic glass for broad-band optical amplification“ - J. Šmejcký, V. Jeřábek, D. Mareš, J. Voves, P. Vařák, J. Cajzl, J. Oswald, V. Prajzler, P. Nekvindová, Optical Materials 137 (2023) 113621, https://doi.org/10.1016/j.optmat.2023.113621

„Polydimethylsiloxane multimode optical channel waveguides doped with yellow dye fabricated by microdispensing“ - V. Prajzler, M. Latečka, P. Vařák, P. Nekvindová, J Mater Sci: Mater Electron (2023) 34:1907, https://doi.org/10.1007/s10854-023-11324-7

„Active Optic Glass for Broad-band Amplification by Erbium-Bismuth Activators“ - V. Jeřábek, D. Mareš, J. Šmejcký, J. Voves, J. Cajzl, P. Nekvindová, San-Liang Lee, Proc. of SPIE 12575 (2023) 125750F, https://doi.org/10.1117/12.2664952

2022

„Near-infrared photoluminescence properties of Er/Yb- and Ho/Yb-doped multicomponent silicate glass - The role of GeO2, Al2O3 and ZnO“ - P. Vařák, P. Nekvindová, J. Baborák, J. Oswald, Journal of Non-Crystalline Solids 582 (2022) 121457, https://doi.org/10.1016/j.jnoncrysol.2022.121457

„Energetic Au ion beam implantation of ZnO nanopillars for optical response modulation“ - A. Macková, P. Malinský, A. Jagerová, R. Mikšová, O. Lalik, P. Nekvindová, J. Mistrík, P. Marvan, Z. Sofer, V. Holý, J. Schutter, U. Kentsch, A. Azarov, A. Galeckas, Journal of Physics D: Applied Physics 55 (2022) 215101, https://doi.org/10.1088/1361-6463/ac5486

„Luminescence and laser properties of RE-doped silica optical fibers: The role of composition, fabrication processing, and inter-ionic energy transfers“ - P. Vařák, M. Kamrádek, J. Mrázek, O. Podrazký, J. Aubrecht, P. Peterka, P. Nekvindová, I. Kašík, Optical Materials: X 15 (2022) 100177, https://doi.org/10.1016/j.omx.2022.100177

„Erbium ion implantation into LiNbO3, Al2O3, ZnO and diamond - measurement and modelling - an overview“ - J. Cajzl, P. Nekvindová, A. Mackova, M. Varga, A. Kromka, Physical Chemistry Chemical Physics 24 (2022) 19052, https://doi.org/10.1039/D2CP01803A

„Heat treatment and fiber drawing effect on the luminescence properties of RE-doped optical fibers (RE = Yb, Tm, Ho)“ - P. Vařák, I. Kašík, P. Peterka, J. Aubrecht, J. Mrázek, M. Kamrádek, O. Podrazký, I. Bartoň, M. Franczyk, R. Buczynski, P. Honzátko, Optics Express 30, No. 6 (2022) 10050, https://doi.org/10.1364/OE.449643

„Photoluminescence of Er/Yb-doped zinc-silicate glass and glass ceramics with ZnO and Zn2SiO4 nanoparticles“ - P. Vařák, J. Baborák, J. Cajzl, P. Nekvindová, Proceedings of SPIE - The International Society for Optical Engineering, Volume 12142 (2022) 1214213, https://doi.org/10.1117/12.2620488

2021

„Er3+/Yb3+ doped active optic Y splitter realized by diffusion waveguides with Ag+—Na+ ion exchange“ –  J. Šmejcký, D. Mareš, O. Barkman, P. Nekvindová, V. Prajzler & V. Jeřábek, Optical and Quantum Electronics volume 53 (2021) 440, https://doi.org/10.1007/s11082-021-03035-2

„Thermal stability and photoluminescence properties of RE-doped (RE = Ho, Er, Tm) alumina nanoparticles in bulk and fiber-optic silica glass“ – P. Vařák, J. Mrázek, A.A. Jasim, S. Bysakh, A. Dhar, M. Kamrádek, O. Podrazký, I. Kašík, I. Bartoň. P. Nekvindová, Optical Materials 118 (2021) 111239, https://doi.org/10.1016/j.optmat.2021.111239

„Energy transfer coefficients in thulium-doped silica fibers“ – M. Kamrádek, J. Aubrecht, P. Vařák, J. Cajzl, V. Kubeček, P. Honzátko, I. Kašík, and P. Peterka, Optical Materials Express 11 (2021) 1805-1814, https://doi.org/10.1364/OME.427456

„All-polymer silk-fibroin optical planar waveguides“ – V. Prajzler, S. Arif, K. Min, S. Kim, P. Nekvindova, Optical Materials 114 (2021) 110932, https://doi.org/10.1016/j.optmat.2021.110932

„Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (RE = Ho, Er, Tm) after silver ion exchange“ – P. Vařák, P. Nekvindová, S. Vytykáčová, A. Michalcová, P. Malinský, J. Oswald, Journal of Non-Crystalline Solids, 557 (2021) 120580, https://doi.org/10.1016/j.jnoncrysol.2020.120580

2020

„Creation of Gold Nanoparticles in ZnO by Ion Implantation–DFT and Experimental Studies“ – J. Cajzl, K. Jeníčková, A. Michalcová, M. Veselý, A. Macková, P. Malinský, A. Jágerová, R. Mikšová, S. Akhmadaliev, Nanomaterials, 10 (2020) 2392, https://doi.org/10.3390/nano10122392

„Nanostructures in various Au ion-implanted ZnO facets modified using energetic O ions“ – A. Macková A. Jagerová, P. Malinský, M. Cutroneo, J. Flaks, P. Nekvindová, A. Michalcová, V. Holý,  T. Košutová, Physical Chemistry Chemical Physics 22 (2020) 23563-23573, https://doi.org/10.1039/D0CP04119J

„High energy Au+ ion implantation of polar and nonpolar ZnO—Structure modification and optical properties“ – A. Jagerová, P. Malinský, R. Mikšová, P. Nekvindová, J. Cajzl, P. Ryšánek, A. Macková, Surface and Interface Analysis 52 (2020) 1083-1088, https://doi.org/10.1002/sia.6789

„Er implantation into various cuts of ZnO - experimental study and DFT modelling“ – P. Nekvindova, J. Cajzl, A. Mackova, P. Malinsky, J. Oswald, R. Bottger, R. Yatskiv, Journal of Alloys and Compounds 816 (2020) 152455, https://doi.org/10.1016/j.jallcom.2019.152455

„Erbium-ion implantation of single- and nano-crystalline ZnO“ – J. Cajzl, P. Nekvindova, K. Jenickova, A. Jagerova, P. Malinsky, Z. Remes, N. Neykova, Y. Y. Chang, J. Oswald, U. Kentsch, A. Mackova, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 464 (2020) 65-73, https://doi.org/10.1016/j.nimb.2019.11.039

„Non-polar ZnO facet implanted with Au ions and subsequently modified using energetic O ion irradiation“ – A. Jagerova, P. Malinsky, M. Cutroneo, P. Nekvindova, J. Cajzl, A. Michalcova, A. Mackova, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 462 (2020) 16-23, https://doi.org/10.1016/j.nimb.2019.09.030

„Optical properties of deoxyribonucleic acid thin layers deposited on an elastomer substrate“, - V. Prajzler, W. Jung, K. Oh, J. Cajzl, P. Nekvindova, Optical Materials Express, 10 (2020) 421-433, https://doi.org/10.1364/OME.10.000421

2019

„Damage formation and Er structural incorporation in m-plane and a-plane ZnO“ – A. Mackova, P. Malinsky, A. Jagerova, R. Miksova, P. Nekvindova, J. Cajzl, E. Rinkeviciute, S. Akhmadaliev, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 460 (2019) 38-46, https://doi.org/10.1016/j.nimb.2018.10.003

„Magnetism and optical properties of Yb3Al5O12 hosted Er3+ - experiment and theory“ – D. Sedmidubsky, V. Jakes, K. Rubesova, P. Nekvindova, T. Hlasek, R. Yatskiv, P. Novak, Journal of Alloys and Compounds 810 (2019) Unsp 151903, https://doi.org/10.1016/j.jallcom.2019.151903

„Distinct defect appearance in Gd implanted polar and nonpolar ZnO surfaces in connection to ion channeling effect“ – A. Jagerova, P. Malinsky, R. Miksova, P. Nekvindova, J. Cajzl, S. Akhmadaliev, V. Holy, A. Mackova, Journal of Vacuum Science & Technology A 37 (2019) 061406, https://doi.org/10.1116/1.5125320

„Au incorporation into various ZnO crystallographic cuts realised by ion implantation - ZnO damage characterization“ – A. Mackova, P. Malinsky, A. Jagerova, R. Miksova, P. Nekvindova, J. Cajzl, R. Bottger, S. Akhmadaliev, Vacuum 169 (2019) Unsp 108892, https://doi.org/10.1016/j.vacuum.2019.108892

„Inorganic-organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS)“ – V. Prajzler, P. Jasek, P. Nekvindova, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 25 (2019) 2249-2258, https://doi.org/10.1007/s00542-018-4105-x

„Nanoparticle and Solution Doping for Efficient Holmium Fiber Lasers“ – M. Kamrádek, I. Kašík, J. Aubrecht, J. Mrázek, O. Podrazký, J. Cajzl, P. Vařák, V. Kubeček, P. Peterka, P. Honzátko, IEEE Photonics Journal, 11 (2019) 7103610, https://doi.org/10.1109/JPHOT.2019.2940747

„Electro-optic glass for light modulators“ – K. Jilkova, M. Mika, P. Kostka, F. Lahodny, P. Nekvindova, O. Jankovsky, R. Bures, M. Kavanova, Journal of Non-Crystalline Solids 518 (2019) 51-56, https://doi.org/10.1016/j.jnoncrysol.2019.05.014

„The influence of copper and silver in various oxidation states on the photoluminescence of Ho3+/Yb3+ doped zinc-silicate glasses“ – P. Varak, S. Vytykacova, P. Nekvindova, A. Michalcova, P. Malinsky, Optical Materials 91 (2019) 253-260, https://doi.org/10.1016/j.optmat.2019.03.029

„Femtosecond laser induced two-photon absorption in Au-ion embedded glasses“ – R. Ahmad, M. S. Rafique, A. Ahmed, A. Ajami, P. Nekvindova, B. Svecova, S. Bashir, S. Iqbal, Laser and Particle Beams 37 (2019) 61-66, https://doi.org/10.1017/S026303461900020X

„The properties of free-standing epoxy polymer multi-mode optical waveguides“ – V. Prajzler, M. Neruda, P. Jasek, P. Nekvindova, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 25 (2019) 257-264, https://doi.org/10.1007/s00542-018-3960-9

2018

„Co-implantation of Er and Yb ions into single-crystalline and nano-crystalline diamond“ – J. Cajzl, B. Akhetova, P. Nekvindova, A. Mackova, P. Malinsky, J. Oswald, Z. Remes, M. Varga, A. Kromka, Surface and Interface Analysis 50 (2018) 1218-1223, https://doi.org/10.1002/sia.6407

„Erbium Luminescence Centres in Single- and Nano-Crystalline Diamond-Effects of Ion Implantation Fluence and Thermal Annealing“ – J. Cajzl, P. Nekvindova, A. Mackova, P. Malinsky, J. Oswald, Z. Remes, M. Varga, A. Kromka, B. Akhetova, R. Bottger, V. Prajzler, Micromachines 9 (2018) 316, https://doi.org/10.3390/mi9070316

„Water-soluble polymers as chelating agents for the deposition of Er3+/Yb3+:LiNbO3 waveguiding films“ – D. Mikolasova, K. Rubesova, V. Jakes, P. Nekvindova, Z. Z. Cilova, J. Oswald, Journal of Sol-Gel Science and Technology 86 (2018) 274-284, https://doi.org/10.1007/s10971-018-4639-5

„THE EFFECT OF ZINC CONTENT ON THE ENHANCEMENT Er3+-Yb3+ LUMINESCENCE PROPERTIES IN THE SILICATE GLASS MATRIX“ – S. Vytykacova, S. Stanek, B. Svecova, M. Mika, J. Oswald, A. Mackova, P. Malinsky, R. Bottger, R. Yatskiv, P. Nekvindova, Ceramics-Silikáty 62 (2018) 188-193, https://doi.org/10.13168/cs.2018.0011

„Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides“ – V. Prajzler, M. Neruda, P. Nekvindova, Journal of Materials Science-Materials in Electronics 29 (2018) 5878-5884, https://doi.org/10.1007/s10854-018-8560-z

„The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum“ – V. Prajzler, K. Min, S. Kim, P. Nekvindova, Materials 11 (2018) 112, https://doi.org/10.3390/ma11010112

2017

„Ageing of PVP/LiNbO3 solutions and its impact on the optical properties of Er3+/Yb3+:LiNbO3 waveguiding films“ – K. Rubesova, D. Mikolasova, T. Hlasek, V. Jakes, P. Nekvindova, P. Matejka, M. Dendisova, Z. Z. Cilova, J. Oswald, Journal of Physics and Chemistry of Solids 111 (2017) 343-348, https://doi.org/10.1016/j.jpcs.2017.08.016

„The influence of silver ion exchange on the luminescence properties of Er-Yb silicate glasses“ – S. Stanek, P. Nekvindova, B. Svecova, S. Vytykacova, M. Mika, J. Oswald, O. Barkman, J. Spirkova, Optical Materials 72 (2017) 183-189, https://doi.org/10.1016/j.optmat.2017.05.053

„A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions“ – B. Svecova, P. Varak, S. Vytykacova, P. Nekvindova, A. Mackova, P. Malinsky, R. Bottger, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 406 (2017) 193-198, https://doi.org/10.13168/cs.2017.0003

„The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique“ – V. Prajzler, P. Nekvindova, J. Spirkova, M. Novotny, Journal of Materials Science-Materials in Electronics 28 (2017) 7951-7961, https://doi.org/10.1007/s10854-017-6498-1

„Properties of Multimode Optical Epoxy Polymer Waveguides Deposited on Silicon and TOPAS Substrate“ – V. Prajzler, M. Neruda, P. Nekvindova, P. Mikulik, Radioengineering 26 (2017) 10-15, https://doi.org/10.13164/re.2017.0010

„Erbium ion implantation into diamond-measurement and modelling of the crystal structure“ – J. Cajzl, P. Nekvindova, A. Mackova, P. Malinsky, D. Sedmidubsky, M. Husak, Z. Remes, M. Varga, A. Kromka, R. Bottger, J. Oswald, Physical Chemistry Chemical Physics 19 (2017) 6233-6245,     https://doi.org/10.1039/C6CP08851A

„THE PREPARATION AND CHARACTERIZATION OF COPPER-CONTAINING THIN FILMS PREPARED BY THE SOL-GEL METHOD ON VARIOUS GLASSES“ – P. Varak, B. Svecova, D. Horkavcova, S. Vytykacova, Ceramics-Silikáty 61 (2017) 99-105, https://doi.org/10.13168/cs.2017.0003

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 29076 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/materials-for-photonics/publications [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29077] => stdClass Object ( [nazev] => Conferences [seo_title] => Conferences [seo_desc] => [autor] => [autor_email] => [obsah] =>

Contributions presented in last 5 years

2024

SPIE. PHOTONICS EUROPE (7. - 11.4., Strasbourg, France)

"Nanoparticle doping method for highly thulium-doped optical fibers for efficient, eye-safe fiber lasers – A fluorescence lifetime study" - P. Varak, M. Kamradek, J. Aubrecht, O. Podrazky, I. Barton, I. Kasik, P. Peterka, P. Honzatko

2023

New Inorganic Functional Oxides: Synthesis, Characterisation and Simulations (4. - 6.10., Orléans, France)

"Er/Yb-doped zinc-silicate glass-ceramics with enhanced photoluminescence and radioluminescence properties" - P. Vařák, V. Jarý, A. Michalcová, J. Mrázek, P. Nekvindová

"Gold nanoparticles in lithium yttrium aluminosilicate glass prepared using aerodynamic levitation coupled to laser heating and melt quenching" - J. Baborák, P. Vařák, A. Zandona, M. Allix, E. Veron, M. Pitcher, P. Nekvindová

The 11th European Optical Society Annual Meeting EOSAM (11. - 15.9., Dijon, France)

"Er-doped zinc-silicate glass-ceramics with enhanced emission in the near-infrared region" - P. Vařák, P. Nevindová, J. Baborák 

"Silica optical fibers for a detection of X-ray radiation" - J. Proboštová, V. Jarý, A. Beitlerová, P. Nekvindová, P. Vařák, J. Mrázek

Development of Materials Science in Research & Education DMSRE’31 (5. - 9.9., Nová Lesná, Slovakia)

"Er-doped zinc-silicate glass-ceramics with enhanced emission in the near-infrared region" - P. Vařák, J. Baborák, E. Véron, A. Michalcová, J. Mrázek, J. Volf, M. Allix, P. Nekvindová

"The effect of composition on luminescence properties of Ce and Mn ions in borate-silicate glasses" - J. Volf, P. Vařák, M. Kormunda, M. Buryi, P. Nekvindová

"Preparation and characterisation of gold nanoparticles in silicate glass matrices using aerodynamic levitation coupled to laser heating" - J. Baborák, P. Vařák, A. Zandona, M. Pitcher, M. Allix, E. Veron, P. Nekvindová

20th International Conference on Luminescence ICL 2023 (27.8. - 1.9., Paris, France)

"Scintillation properties of Na2O-ZnO-SiO2 glass system: potentially interesting distributed sensor of harmful radiation" - V. Jarý, V. Babin, P. Vařák, P. Nekvindová, J. Mrázek, M. Nikl

The annual meeting of the French Union for Science and Glass Technology and the German Society of Glass Technology DGG-USTV Join Annual Meeting (22. - 24.5., Orléans, France)

"Preparation of glasses with gold nanoparticles using melt-quenching and aerodynamic levitation coupled to laser heating" - J. Baborak, A. Zandona, P. Varak, M. Pitcher, M. Allix, E. Veron, P. Nekvindova

2022

SPIE Photonics Europe, 2022 (3. - 7. 4., Strasbourg, France)

"Photoluminescence of Er/Yb-doped zinc-silicate glass and glass ceramics with ZnO and Zn2SiO4 nanoparticles" - P. Vařák, J. Baborák, J. Cajzl, P. Nekvindová

"Evaluation of aerodynamic levitation laser heating technique for synthesis of silicate glasses with gold nanoparticles" - J. Baborák, A. Zandona, P. Vařák, M. Yembele, P. Nekvindová, M. Allix, E. Veron, M. Pitcher, C. Genevois

Development of Materials Science in Research & Education DMSRE‘31 (5. - 9.9., Nová Lesná, Slovakia)

"The Enhancement of rare-earth ions luminescence in silicate glass" - P. Vařák, J. Baborák, P. Florian, J. Oswald, P. Nekvindová

Photoluminescence of Rare-Earths PRE’22 (11. - 14.9., Szczawnicza, Poland)

"The luminescence of Er3+ and Ho3+ ions in multicomponent silicate glass – the role of GeO2, Al2O3 and ZnO" - P. Vařák, J. Baborák, P. Florian, J. Oswald, P. Nekvindová

2021

14th International Conference on Solid State Chemistry (SSC) (13. - 17.6., Trenčín, Slovakia) [on-line]

"Ion implantation of Gd+, Er+ and Au+ into various crystallographic cuts of ZnO – structural and photoluminescence properties" – J. Cajzl, P. Nekvindová, K. Jeníčková, A. Jagerová, A. Macková, J. Oswald, U. Kentsch

"Energy transfer from silver to rare-earth ions (Er, Tm, Ho) and near-infrared photoluminescence enhancement in zinc-silicate glasses" – P. Vařák, P. Nekvindová, S. Vytykáčová, A. Michalcová, P. Malinský, J. Oswald

"Borate and silicate glasses doped with Ce3+ and Mn2+ ions for UV-VIS spectral shifting" – J. Volf, P. Vařák, J. Cajzl, P. Nekvindová

Anorganické nekovové materiály 2021 (24. - 25.2., Praha, Czech Republic)

"Energy transfer from silver to rare-earth ions (Er, Tm, Ho) and near-infrared photoluminescence enhancement in zinc-silicate glasses" – P. Vařák, P. Nekvindová, S. Vytykáčová, A. Michalcová, P. Malinský, J. Oswald

2020

The COVID-19 pandemic.

2019

13th European Conference on Accelerators in Applied Research and Technology (ECAART) (5. - 10.5., Split, Croatia)

"Non-polar ZnO facet implanted with Au ions and subsequently modified using energetic O ion irradiation" – A. Jagerová, P. Malinský, M. Cutroneo, P. Nekvindová, A. Michalcová, A. Macková

"Erbium-ion implantation of single- and nano-crystalline ZnO" – J. Cajzl, P. Nekvindová, K. Jeníčková, A. Jagerová, P. Malinský, Z. Remeš, N. Neykova, Y.-Y. Chang, J. Oswald, U. Kentsch, A. Macková

8th International workshop on photoluminescence in rare earth photonics materials and devices (PRE'19) (4. - 6.9., Nice, France)

"The changes of the photoluminescence properties caused by ion implantation of erbium into single-crystalline and nano-crystalline ZnO" – P. Nekvindová, J. Cajzl, K. Jeníčková, A. Jagerová, P. Malinský, Z. Remeš, U. Kentsch, A. Macková

"Experimental and theoretical study of erbium incorporation in various crystal materials – ZnO, LiNbO3 and Al2O3" – J. Cajzl, P. Nekvindová, A. Macková, J. Oswal

"The effect of Zn, Al and Ge on the phonon energy and Er3+ photoluminescence in silicate glasses" – P. Vařák, P. Nekvindová, J. Cajzl, J. Oswald

18th European Conference on Applications of Surface and Interface Analysis (ECASIA) (15. - 20.9., Dresden, Germany)

"Theoretical modelling and experimental measurement of gadolinium positions in ZnO structure" – J. Cajzl, P. Nekvindová, K. Jeníčková, A. Jagerová, A. Macková,  U. Kentsch

"The changes of the photoluminescence properties caused by ion implantation of Er and Au into ZnO - a comparison" – P. Nekvindová, J. Cajzl, K. Jeníčková, A. Jagerová, A. Macková, J. Oswald, U. Kentsch

"Change of the luminescence properties of Tm-Yb silicate glasses by doping of silver ions using ion implantation" – P. Vařák, P. Nekvindová, J. Cajzl, M. Míka, A. Macková, P. Malinský, A. Michalcová

"5 MeV Au+ ion implantation of polar and non-polar ZnO – structure modification and optical properties" – A. Jagerová, P. Malinský, R. Mikšová, P. Nekvindová, J. Cajzl, P. Ryšánek, A. Macková

2018

COST MP1401 – Winter school on fiber lasers & optical fiber technology (11. - 16.2., Lausanne, Switzerland)

"Determination of energy-transfer coefficients in Tm‑doped fibers for fiber lasers" – J. Cajzl, P. Nekvindová, P. Peterka, P. Honzátko, O. Podrazký, M. Kamrádek, J. Aubrecht, J. Proboštová, I. Kašík

International Conference on Diamond and Carbon Materials (ICDCM) (2. - 6.9., Dubrovnik, Croatia)

"Luminescent erbium incorporation in rigid/tight crystal structures of diamond and ZnO – theoretical simulation and experiment" – J. Cajzl, P. Nekvindová, A. Macková, P. Malinský, Z. Remeš, M. Varga, A. Kromka, R. Böttger, J. Oswald

17th Joint Vacuum Conference (10. - 14.9., Olomouc, Czech Republic)

"Ion beam modification of crystalline materials for optoelectronic application" – A. Macková, P. Malinský, A. Jagerová, Z. Sofer, P. Nekvindová, J. Cajzl, et al.

"Investigation of structure modification in various crystallographic ZnO orientations implanted with 400 keV"  – A. Macková, P. Malinský, A. Jagerová, P. Nekvindová, J. Cajzl,  R. Böttger, S. Akhmadaliev

Fall Meeting of the European-Materials-Research-Society (E-MRS) (17. - 20.9., Varsaw, Poland)

"The effect of silver and copper on photoluminescence of silicate glass containing holmium and ytterbium" – P. Vařák, S. Vytykáčová, P. Nekvindová, A. Michalcová

"Optically active erbium centers in various crystallographic cuts of ZnO" – P. Nekvindová,  J. Cajzl, A. Macková,  P. Malinský,  J. Oswald,  R. Böttger

"Experimental measurement and theoretical modelling of erbium positionsin various crystal structures" – ZnO, diamond and LiNbO3 – J. Cajzl, P. Nekvindová, B. Akhetova, A. Macková, P., Malinský, J. Oswald, R. Böttger

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 29077 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/materials-for-photonics/conferences [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29078] => stdClass Object ( [nazev] => Projects and patents [seo_title] => Projects and patents [seo_desc] => [autor] => [autor_email] => [obsah] =>

Current Projects

Advanced inorganic nanocomposites for distributed sensors of harmful radiation

Czech Science Foundation (9,056 thou. CZK)
No: GA23-05507S
Realization period: 2023-2025
Participant researcher: Pavla Nekvindová

The project targets on experimental research of preparation and properties of transparent inorganic nanocomposites containing radioluminescent ceramic nanoparticles. We will study the formation, chemical and temperature stability of radioluminescent nanoparticles Ce: YAG and Zn2SiO4 distributed in ternary inorganic glasses with the composition Y2O3-Al2O3-SiO2 and ZnO-Al2O3-SiO2. Nanocomposites will be prepared by conventional melting followed by controlled thermal recrystallization, vacuum sintering of nanoparticles or aerodynamic levitation method. Selected samples will be drawn into optical fibers. We will evaluate the effect of the structure and composition of nanocomposites on radioluminescent properties. The results will expand general knowledge about the formation of radioluminescent ceramic nanoparticles in inorganic nanocomposites and contribute to the clarification of the effect of the structure and composition of the nanocomposites on radioluminescent properties. Nanocomposites can be applied to design scintillation detectors or distributed sensors of harmful radiation.

Gradient refractive index collimators for coupling to optical fibres

The Technology Agency of the Czech Republic - TREND (18,685 thou. CZK)
No: FW10010261
Realization period: 2024-2026
Main beneficiary: SQS Fiber Optics
Participant researcher: Pavla Nekvindová

The aim of the project is to research and develop a new technology of production of GRIN fiber optic collimators for binding to optical fibers meeting parameters for selected applications. 

Patents

303767

"Optical luminescent sodiumaluminosilicate glass doped with metal oxides for photonics" - Míka M., Staněk S., Nekvindová P., Švecová B., Špirková, J. Lahodný F., Stará S.

303762

"Optical sodiumaluminosilicate glass for photonic components" - Míka M., Špirková J., Lahodný F., Nekvindová P., Staněk S.

303764

"Optical luminescence sodiumaluminosilicate glass doped with ions Cu+ a Cu2+ for photonics" - Míka M., Špirková J., Stará S., Malichová H., Třešňáková P.

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 29078 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/materials-for-photonics/patents [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [29079] => stdClass Object ( [obsah] => [iduzel] => 29079 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => slider [html] => [css] => [js] => [autonomni] => 0 ) ) ) [iduzel] => 29064 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/materials-for-photonics [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [29056] => stdClass Object ( [nazev] => Theoretical chemistry [seo_title] => Theoretical chemistry [seo_desc] => [autor] => D7D [autor_email] => sedmidub@vscht.cz [obsah] =>

Group profile

Computational methods of quantum mechanics and chemical thermodynamics represent powerful and widely used tools for prediction and interpretation of properties and behavior of chemical substances. The main goal of our research is the first-principle calculation of  thermodynamic properties of inorganic materials as well as their application in phase and chemical equilibria modeling and phase diagrams construction.

Research focus

  • Calculation of cohesive energies, enthalpies of formation  and defect energies within DFT approximation
  • Calculation of phonon spectra and heat capacities within harmonic  approximation combined with DFT techniques
  • Calculation of phase and chemical equilibria using total Gibbs energy minimization
  • Theoretical description of heat capacity and other material properties  of non-stoichiometric phases
ořez 215*215px  šířka 215px
Electron denstity and density of states of ThN

Studied materials

  • Transition metal oxides

  • Dilute magnetic semiconductors

  • Nuclear materials

  • Graphene and layered chalcogenides

ořez 215*215px

Phonon spectrum of MgO and BaO

šířka 215px

Phase diagram of BiSrMnO system

šířka 450px

Analysis of valence states U-5f in UO2

Staff

David Sedmidubský
PhD students:  J. Mokrý, J. Cajzl
Collaboration: J. Leitner (DME UCT), J. Macháček (Dep.of Ceramics UCT), K. Knížek (IP ASCR)
                          R.J.M. Konings, O.Beneš (JRC-EC  Karlsruhe)

Equipment

Hardware:

computational cluster 4x Intel Core i7 / 8 Gb RAM / 500 Gb HD, openSUSE 12.2

Software:

WIEN2k – DFT program for electron structure calculation of crystalline solids using full potential LAPW / APW+lo technique

VASP - DFT program for electron structure calculation of crystalline solids using pseudopotential technique

Phonon – program for calculation of phonon spectra and related thermodynamic properties of solids
FactSage – integrated data base and Gibbs energy minimizer system for thermodynamic modeling of phase and chemical equilibria of inorganic systems

šířka 450px originál
originál originál


Selected publications

  • D.Sedmidubský, R.J.M.Konings, P.Novák, Calculation of Enthalpies of Formation of Actinide Nitrides, J. Nucl. Mater. 344 (2005) 40-44.
  • D.Sedmidubský, J.Leitner, Calculation of Thermodynamic Properties of AIII Nitrides, J.Cryst.Growth 286 [1] (2006) 66-70.
  • D. Sedmidubský, J. Leitner, O.Beneš, Phase Equilibria Modeling in Bi-Sr-Mn-O System, Calphad 30 [2] (2006) 179-184.
  • D.Sedmidubský, J.Leitner, Z.Sofer, Phase Relations in the Ga-Mn-N System, J.Alloy.Compd. 452 (2008) 105-109.
  • D.Sedmidubský, J.Leitner, P.Svoboda, Z.Sofer, J.Macháček, Heat Capacity and Phonon Spectra of AIIIN - Experiment and Calculation, J.Therm.Anal.Calorim. 95 (2009) 403-407.
  • D.Sedmidubský, R.J.M.Konings, P.Souček, Ab-initio calculations and Phase Diagram Assessments of An-Al Systems (An = U, Np, Pu),J.Nucl.Mater. 397 (2010) 1-7.
  • D.Gryaznov, D.Sedmidubský, E. Heifets, Density functional theory calculations on magnetic properties of actinide compounds, J. Phys. Chem. Chem. Phys. 12 (2010) 12273-12278
  • D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, Phase Equilibria in Ca-Co-O system, J. Sol. St. Chem. 194 (2012) 199-205
  • P.Holba, D.Sedmidubský, Heat capacity equations for nonstoichiometric solids, J. Therm. Anal. Calorim. 113 (2013) 239-245
  • D.Sedmidubský, P.Holba, Material properties of nonstoichiometric solids, J. Therm. Anal. Calorim. 120(2015) 183-188
[poduzel] => Array ( ) [iduzel] => 29056 [canonical_url] => //uach.vscht.cz/research/theoretical-chemistry [skupina_www] => Array ( ) [url] => /research/theoretical-chemistry [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) [api_suffix] => )

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.
switch to desktop version